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Abstract

It is nowadays well known that the finite subgroups of the Cremona group are isomorphic to the

finite groups that act biregularly on rational varieties. While the question of classifying these

subgroups of Cremona up to isomorphism would be answered by finding all the groups that

can act on rational varieties, one can ask for a finer classification, namely up to conjugation.

This leads to the beautiful theory of G-equivariant birational geometry of rational varieties.

We can outline two particularly important questions. The first is the linearization problem,

that is, determining whether a subgroup G of Crn(C) is conjugate to a subgroup of Aut(Pn),

or equivalently, the G-equivariant rationality problem. The second is the G-solidity problem.

Roughly speaking, a variety is G-solid if G is not conjugate in Crn(C) to a group that can be

decomposed into subgroups of Cremona groups of smaller rank.

In dimension two, both questions remained open after the seminal works of Blanc and Dol-

gachev–Iskovskikh, and we completely answer them in the present thesis. In dimension three,

we further the investigations of Cheltsov–Shramov and Prokhorov on actions of the icosahed-

ral group A5 on Fano threefolds, and we treat the surprisingly open case of smooth quadrics.

We provide all the G-birational models for the fixed-point-free actions of the icosahedral group

A5 on these varieties, and we answer the questions of linearizability and solidity for all such

actions.

Lastly, we became interested in the Fano threefolds obtained by blowing up a non-hyperelliptic

curve of degree six and genus three in the projective space, because their automorphism

groups beautifully arise from actions on smooth plane quartics. We construct all the pos-

sible isomorphism classes of groups acting faithfully on such a variety. These threefolds also

provided an opportunity to dive into the world of K-stability. In the final part of this thesis,

we present how we linked their G-equivariant geometry to the existence of a Kähler–Einstein

metric and produced many K-stable examples.

We will essentially consider the actions of finite groups, and, unless stated otherwise, all the

work will be done over the field of complex numbers.
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Lay Summary

This thesis lies in the field of Algebraic Geometry, a central area of mathematics that studies

solutions to polynomial equations and the geometric structures they define, called algebraic

varieties. Understanding their symmetries and maps between them beautifully brings together

geometry, algebra, and group theory. We focus on a class of varieties called rational, their

groups of symmetries, and equivariant birational maps between them. The main motivation

for this work is the classification of conjugacy classes of subgroups of the Cremona groups.

We first define these concepts and then show how they naturally agree and form the beautiful

theory of equivariant birational geometry of rational varieties.
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Chapter 1

Introduction

"En géométrie birationnelle, les mathématiques sont heureuses."

Frédéric Mangolte

This thesis is based on five research papers. In accordance with the Academic Quality and

Standards of the University of Edinburgh1, their mathematical content has not been modified.

Some necessary adjustments had to be made for consistency of the notation and definitions

throughout this thesis, and some intersecting preliminary parts will be given instead in the

present introduction. The papers we include are the following.

• G-solid rational surfaces. Pinardin (2024) — discussed in Chapter 2.

• Linearization problem for finite subgroups of the plane Cremona group. Pinardin,

Sarikyan, and Yasinsky (2024) — discussed in Chapter 3.

• A5-equivariant geometry of quadric threefolds. Pinardin and Zhang (2025b) — dis-

cussed in Chapter 4.

• Abelian groups of K3 type. Loginov, Pinardin, and Zhang (2025) — discussed in

Chapter 5.

• K-stability and space sextic curves of genus three. Cheltsov, Li, Ma’u, and Pinardin

(2024) — discussed in Chapter 6.

Unless stated otherwise, all algebraic varieties in this thesis are projective and defined over

C. The n-dimensional projective space over C will be denoted by Pn, and a variety X is

called rational if there exists a birational map ϕ : X 99K Pn. Equivariant birational geometry

is the study of birational maps that preserve groups of symmetries. When restricted to rational

varieties of dimension n, this becomes the geometrical counterpart of the study of a purely

1. https://registryservices.ed.ac.uk/academic-services/students/thesis-submission



. Introduction 2

algebraic object – the group of C-automorphisms of the field C(x1, . . . ,xn), called the Cremona

group of rank n. It is isomorphic to the group of birational self-maps of the projective space,

and is denoted by Crn(C). This correspondence between a geometrical concept and a group-

theoretical one dates back to Yu. Manin and V. Iskovskikh; we will start this thesis by recalling

its formalism.

1.1 G-varieties

A G-variety is a triple (X ,G, ι), where X is a projective variety, G is a group and ι is an injective

group morphism ι : G ↪→ Aut(X). A G-birational map between two G-varieties (X ,G, ι) and

(X ′,G, ι ′) is a birational map ϕ : X 99K X ′ such that ϕι(G)ϕ−1 = ι ′(G′). If such a map ϕ

exists, we say that (X ,G, ι) and (X ′,G, ι ′) are G-birational to each other. Let X be a rational

variety and ϕ : X 99K Pn be a birational map. It is obvious that ϕAut(X)ϕ−1 is a subgroup

of Crn(C). One can naturally ask for a converse statement, namely, given a subgroup G of

Crn(C), whether there exists or not a rational variety ϕ : X 99K Pn such that ϕ−1Gϕ is a

subgroup of Aut(X). It is now classically known that the answer is positive for any finite group.

Theorem 1.1.1. Let G be a finite subgroup of Crn(C). There exists an n-dimensional variety

X and a birational map ϕ : X 99K Pn such that ϕGϕ−1 ⊂ Aut(X). The G-variety (X ,G, ι) is

called a regularization of the group G.

For a proof, the reader can refer, for example, to de Fernex and Ein (2002). Let (X ,G, ι) and

(X ,G, ι ′) be two rational G-varieties. If they are G-birational, then Φ(X ,G, ι) and Φ(X ′,G, ι ′)

are subgroups of Crn(C) that are conjugate to each other. It induces a natural one-to-one

correspondence between conjugacy classes of finite subgroups of Crn(C) and rational G-

varieties of dimension n up to G-birational equivalence.

1.2 History of results

While the Cremona group of rank one is simply the automorphism group of the projective

line, isomorphic to PGL2(C), the problem of classifying the subgroups of Crn(C) becomes

very involved starting from n = 2, and traces its origins to E. Bertini’s work on involutions in

Cr2(C). Bertini identified three types of conjugacy classes, now referred to as de Jonquières,

Geiser, and Bertini involutions. However, his classification was incomplete, and his proofs

lacked rigour. Progress continued in 1895 with S. Kantor and A. Wiman, who provided a more

detailed description of finite subgroups in Cr2(C), though their work was not entirely accurate

either. It’s only when L. Bayle and A. Beauville further developed the approach of Yu. Manin

and V. Iskovskikh that the first complete proof for the classification of birational involutions was

obtained; see Bayle and Beauville (2000). Later, T. de Fernex extended the classification to
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subgroups of prime order de Fernex (2004), while J. Blanc classified finite abelian subgroups

in Cr2(C), see Blanc (2006). The most comprehensive description of arbitrary finite subgroups

in Cr2(C) was obtained by I. Dolgachev and V. Iskovskikh in their seminal work Dolgachev and

Iskovskikh (2009).

Nevertheless, the conjugacy problem of finite subgroups in Cr2(C) remains open in full gen-

erality (see e.g. (Dolgachev & Iskovskikh, 2009, Section 9 “What is left?” )). In this Chapters 2

and 3, we settle two of its cornerstone parts, namely the questions of solidity and linearizability

that we will introduce in Section 1.4 and Section 1.5.

In dimension three, classifying the subgroups of Cremona is a widely open problem. The first

breakthrough was given by the classification of finite simple groups in Y. Prokhorov (2012).

The author showed that only the following six non-cyclic finite simple groups belong to Cr3(C).
They are:

A5,A6,A7,PSL2(7),SL2(8),PSp4(3). (1)

While the rational threefolds that have a faithful biregular action of A7,SL2(8) and PSp4(3)

are also classified by the author, the G-equivariant birational geometry of rational threefolds

for G ∈ {A5,A6,PSL2(7)} is currently out of reach. However, a lot of work has been achieved

in the case of the icosahedral group A5 in Cheltsov and Shramov (2016a) and Y. Prokhorov

(2025). This group is the most fundamental one in the list (1) and carries a lot of interest from

researchers in the field. Even in the case of one of the most natural Fano varieties, a smooth

quadric in P4, the matter was not tackled. We will fill this gap it in Chapter 4, and in particular

answer the questions of linearizability and solidity.

Starting from Chapter 5, our main focus will be the isomorphism classes of subgroups of

Cr3(C). In Chapter 5, we will present a new step achieved towards the full classification of

finite abelian subgroups of Cr3. We give the full list of finite abelian groups that can act on

a Fano threefold while preserving a K3 surface in the anticanonical linear system. In fact,

we conjecture that all the finite abelian groups that act on rationally connected threefolds

are either included in this list, or a product of subgroups of Cr1(C) and Cr2(C). Finally, we

will present in Chapter 6 our work on a deformation family of rational Fano varieties whose

automorphism groups arise beautifully from the actions on plane quartics. These threefolds

admit several equivalent descriptions, one of them being the smooth complete intersection of

three divisors of bidegree (1,1) in P3×P3. We will give the full list of finite groups that can act

faithfully on them. Finally, we will venture to link this matter to K-stability, and produce many

K-stable examples of such Fano threefolds.
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1.3 Action on Mori fiber spaces

As we mentioned above in Theorem 1.3.2, any finite subgroup of Crn(C) can be regularized

on a rational variety X . In fact, a G-equivariant version of the Minimal Model Program allows

us to only consider G-Mori fiber spaces.

Definition 1.3.1. A variety Y endowed with an action of a finite group G and a G-equivariant

surjective morphism ϕ : Y → Z with connected fibers to some variety Z with an action of G

is a G-Mori fiber space, or G-MFS, if it has terminal singularities, all G-invariant Weil divisors

on Y are Q-Cartier divisors, the dimension of S is strictly smaller than the dimension of Y , the

anticanonical class −KY is ϕ-ample, and rkClG(Y ) = rkClG(S)+ 1. If S is a point, then Y is

called a G-Fano variety.

The following well known statement is crucial for the classification conjugacy classes of sub-

groups of Cremona. It allows us to restrict to actions on Mori fiber spaces.

Theorem 1.3.2. Let X be a rational variety, and F be a group that acts faithfully and biregularly

on it. There exists a G-MFS which is G-birational to X .

1.4 Equivariant solidity

As stated in Theorem 1.3.2, any finite subgroup G of Crn(C) is regularised on a rational G-

Mori fiber space. It yields an exact sequence of the form

1 N G H 1

where H acts on the base of the fibration and N acts on general fibers. Since the base

is rationally connected and the fibers are G-Fano varieties, this configuration splits G into

components N and H acting on Mori fiber spaces of lower dimension. Such a splitting cannot

be obtained when the group G only acts on G-Fano varieties up to conjugation in Cremona.

Such groups were once called primitive by Shokurov, and are of particular importance in the

classification of the subgroups of Cremona; they form its indecomposable building blocks. We

present here the formal definitions of G-solidity, together with the more restrictive notions of

G-rigidity and G-superrigidity.

Definition 1.4.1. Let X be a G-Fano variety.

• X is called G-solid if it is not G-birational to a G-Mori fiber space over a base of positive

dimension.

• X is called G-rigid if for any G-birational map χ : X 99K X ′, the varieties X and X ′ are

G-isomorphic.

• X is called G-rigid if any G-birational map χ : X 99K X ′ is a G-isomorphism.



1.4. Equivariant solidity 5

Note that the notion of G-solidity can be extended to any rational variety. In Chapter 2, we will

present the results we obtained in the paper Pinardin (2024), which gives a complete clas-

sification of G-solid rational surfaces for finite-group actions. As usual, the three-dimensional

problem is much more involved and widely open. As for the linearization problem on quadrics

for the actions of the icosahedral group A5, we will provide the answer to solidity on those

threefolds for the same actions.

1.5 The linearization problem, or equivariant rationality

The classical rationality problem — namely, the question of whether a given algebraic variety

X of dimension n over a field k is birationally equivalent to the projective space Pn over C
— can naturally be reformulated for algebraic varieties with a group action. Once again, this

viewpoint goes back to Yu. Manin:

“In actuality, all of the basic results are relevant not only to rational surfaces over
perfect fields, but also to a somewhat larger class of objects which we call G-
surfaces. Roughly speaking, a G-surface is either a surface over a non-closed
field, or a surface over an algebraically closed field, further provided with a finite
group of automorphisms [...]. The main purpose of the first part of the article [...] is
to show that the methods of birational classification are equally applicable to both
types of G-surfaces. In particular, they permit us to classify the finite (sometimes
only the abelian) subgroups of the Cremona group up to conjugacy and to obtain
other information about them”

(Manin, 1967, p. 142)

Thus, given an algebraic variety X acted on by a finite group G, a natural analogue of (stable)

C-rationality problem is the problem of (stable) G-rationality or linearizability of G.

Definition 1.5.1. Let X be a smooth projective algebraic variety of dimension n equipped with

a faithful action of a finite group G. We say that this action is linearizable or that X is G-rational

if there is a birational map ϕ : X 99K Pn such that ϕ ◦g◦ϕ−1 is an automorphism of Pn for all

g ∈ G.

Similarly, we say that such action is stably linearizable or that X is stably G-rational if X ×Pm

is G-rational for some m ⩾ 0, where the action of G on the projective space Pm is trivial.

For example, from this point of view, the analogue of the famous Zariski Cancellation Problem,

negatively resolved in the seminal work Beauville, Colliot-Théléne, Sansuc, and Swinnerton-

Dyer (1985), is the question of whether stable linearizability implies linearizability.

Despite numerous recent results in equivariant birational geometry, a brief overview of which

we provide below, the problem of G-rationality remained open even in dimension 2. The main

result of this paper is a complete solution of this problem for surfaces. To be more precise,

given a finite group G, we classify all 2-dimensional G-Mori fibre spaces over C that are
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G-rational. This can be viewed as an equivariant analogue of V. Iskovskikh’s criterion of C-

rationality for minimal C-rational surfaces (Iskovskikh, 1996, p. 642). In dimension three as

well, the linearization problem is attracting considerable attention, see, e.g. Cheltsov, Mar-

quand, Tschinkel, and Zhang (2024); Cheltsov, Marquand, Yu., and Zhang (2025); Cheltsov,

Tschinkel, and Zhang (2023a, 2024); Ciurca, Tanimoto, and Tschinkel (2024). A particularly

interesting class of groups is finite simple non-abelian subgroups of Cr3(C). Once again,

the most fundamental one in Prokhorov’s list is the alternating group A5, the smallest non-

abelian simple group. It plays a significant role in birational geometry. There are only three

embeddings of A5 in Cr2(C), up to conjugation. For their descriptions, see Cheltsov (2014),

Dolgachev and Iskovskikh (2009) or Bannai and Tokunaga (2007). In contrast, it was shown

in Krylov (2020) that there are infinitely many conjugacy classes of A5 in Cr3(C). Obtaining a

classification of all such conjugacy classes is thus a difficult task and remains open. Indeed,

there is a wealth of rational threefolds carrying an A5-symmetry: the Segre cubic, the Igusa

and Burkhardt quartic, the quintic del Pezzo threefold, etc. It is a natural question to ask

about conjugation of the corresponding A5-actions in Cr3(C). In the last two decades, this

has been extensively studied Avilov (2016a); Cheltsov, Przyjalkowski, and Shramov (2019),

and a book Cheltsov and Shramov (2016a) was written by Cheltsov and Shramov on this

topic. However, the A5-equivariant geometry for one of the simplest Fano threefolds, smooth

quadric threefolds, had not been addressed. In this paper, we fill this gap, answering the

questions of linearizability and solidity.

1.6 Obstructions

1.6.1 Sarkisov program and birational rigidity

In the papers Pinardin (2024) and Pinardin et al. (2024), whose results are presented in

Chapter 2 and 3, we use an extremely powerful method from birational geometry known

as the Sarkisov program, which, in principle, allows us to answer the question of the bira-

tionality of two Mori fibre spaces. The advantage of this method is that, in dimension 2, it is

very explicit; its application in higher dimensions is much more technically involved. In any

case, it has enabled us to classify the finite linearizable subgroups of Cr2(C), see Theorem

3.2.1. According to the equivariant version of the Sarkisov program (see e.g. (Dolgachev &

Iskovskikh, 2009, Section 7)), every G-birational map between two G-Mori fibre spaces can be

decomposed into a sequence of G-isomorphisms and some “elementary” G-birational maps,

called Sarkisov G-links. These links come in four types.
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Type I.

T
η

xx

π

��
S

��

P1

xx
pt

where S is a G-del Pezzo surface, η is the blow-up of a G-orbit on S, and π : T → P1 is a

G-conic bundle.

Type II.

T
η

��

η ′

��
S

χ //

��

S′

��
B

where η and η ′ are blow-ups of G-orbits on S and S′, of lengths d and d′, correspondently.

In this case S and S′ are G-del Pezzo surfaces if B = pt, or S and S′ are G-conic bundles if

B ≃ P1.

Type III.

T
η

&&

π

��
P1

&&

S

��
pt

This link is the inverse to the link of type I.

Type IV.

T
π

~~

π ′

  
P1

  

P1

��
pt

This link is the choice of a conic bundle structure on a G-conic bundle T , which has exactly

two such structures. Note that in general such a link is not represented by a biregular auto-

morphism of T , which exchanges π and π ′.
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The complete classification of Sarkisov G-links between 2-dimensional G-Mori fibre spaces

was obtained by V. Iskovskikh, see (Iskovskikh, 1996, Theorem 2.6) and (Dolgachev & Iskovskikh,

2009, Propositions 7.12, 7.13). We will use extensively this classification in what follows.

Convention. From now on, when talking about Sarkisov links of some specific types, we

always use the notation from the diagrams above. For example, for a Sarkisov link of type

II starting at a G-del Pezzo surface S, the map η always denotes the blow-up of S.

We present two classical applications of the classification of G-Sariksov links in dimension

two by Iskovskikh (1996) . The first one is the modern proof of the following statement, usually

called the Manin–Segre Theorem. We will need it in Chapter 2 and Chapter 3.

Theorem 1.6.1. Let S be a G-del Pezzo surface. If K2
S ⩽ 3, then S is G-birationally rigid. If

K2
S = 1, then S is G-birationally superrigid.

The second application is the following.

Theorem 1.6.2 ((Iskovskikh, 1969, Theorem 1.6), (Cheltsov, Mangolte, Yasinsky, & Zimmer-

mann, 2024, Theorem 2.10)). Let π : S → P1 be a G-conic bundle such that K2
S ⩽ 0. Then

the following two assertions hold:

(i) S is not G-birational to a smooth (weak) del Pezzo surface;

(ii) Moreover, such S is a G-birationally superrigid G-conic bundle.

We will use this result in Chapter 3. Let us now provide an overview of other obstructions to

G-birational equivalence.

1.6.2 The Bogomolov–Prokhorov invariant

Consider the tower of the Cremona groups

Cr1(C)⊂ Cr2(C)⊂ Cr3(C)⊂ Cr4(C)⊂ . . . ,

where Cri(C) denotes the group of birational self-maps of Pi
C, and each embedding Cri(C)⊂

Cri+1(C) is induced by adding a new variable. Two subgroups G1 ⊂ Crn(C) and G2 ⊂ Crm(C)
are called stably conjugate if they are conjugate in some larger Cremona group CrN(C) ⊃
Crn(C),Crm(C), where N ⩾ n,m.

We say that two G-varieties (X ,G) and (Y,G) are stably birational if there exist two integers

m,n ⩾ 0 and a G-birational map

X ×Pn 99K Y ×Pm,

where G-actions on Pn and Pm are trivial. If (X ,G) is stably birational to (PN ,G), then we say

that G is stably linearizable. The following question can be viewed as an analogue of Zariski

Cancellation Problem in our setting:

Question 1.6.3. Let G ⊂ Cr2(C) be a stably linearizable finite subgroup. Is G linearizable?
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As was observed in Bogomolov and Prokhorov (2013), for a smooth projective G-variety X ,

the cohomology group H1(G,Pic(X)) is a G-birational invariant (in the context of rationality

questions over non-closed fields this observation goes back to Yu. Manin). Moreover, one has

the following.

Theorem 1.6.4 ((Bogomolov & Prokhorov, 2013, Corollary 2.5.1)). If (X ,G) and (Y,G) are

projective, smooth, and stably birational, then

H1(G,Pic(X))≃ H1(G,Pic(Y )).

Corollary 1.6.5 ((Bogomolov & Prokhorov, 2013, Corollary 2.5.2)). If (X ,G) is stably linear-

izable, then H1(H,Pic(X)) = 0 for any subgroup H ⊂ G.

If the latter condition holds, the G-variety X is said to be H1-trivial. It turns out that in some

cases, the invariant H1(G,Pic(X)) can be computed in terms of G-fixed locus:

Theorem 1.6.6. (Bogomolov & Prokhorov, 2013, Theorem 1.1, Corollary 1.2) Let a finite

cyclic group G of prime order p act on a non-singular projective rational surface X . Assume

that G fixes (point-wise) a curve of genus g > 0. Then

H1(G,Pic(X))≃ (Z/pZ)2g.

Moreover, the following are equivalent:

1. G is H1-trivial;

2. (X ,G) is linearizable;

3. (X ,G) is stably linearizable.

For an independent proof, the reader can also refer to Shinder (2016). In particular, de

Jonquières, Bertini and Geiser involutions are not stably linearizable: they all fix a curve of

positive genera.

In Y. Prokhorov (2015), Prokhorov further applies the invariant introduced by Bogomolov and

himself and indicates where to look for negative answers to Question 1.6.3. He shows, for

example, that a del Pezzo surface S acted on by a finite group G with Pic(S)G ≃Z, is H1-trivial

if and only if (i) either K2
S ⩾ 5, (ii) or S is the quartic

x2
1 +ω3x2

2 +ω
2
3 x2

3 + x2
4 = x2

1 +ω
2
3 x2

2 +ω3x2
3 + x2

5 = 0

in P4, acted on by the group G ≃ Z3 ⋊Z4 generated by two automorphisms

(x1,x2,x3,x4,x5) 7→ (x2,x3,x1,ω3x4,ω
2
3 x5), (x1,x2,x3,x4,x5) 7→ (x1,x3,x2,−x5,x4),
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where ω3 = exp(2πi/3). Our Main Theorem below shows that only a few groups in these

two cases (i) and (ii) are linearizable. Constructions of stable linearizability in the remain-

ing non-linearizable cases are sporadic and remain an open problem even in dimension

2. For instance, as of the time of writing, it is unknown whether the group G ≃ Z3 ⋊Z4

mentioned above is stably linearizable. Some of these constructions are mentioned below,

see Remarks 3.4.4, 3.4.15, and 3.4.16.

1.6.3 The Burnside formalism

Another very recent technique for distinguishing birational actions of finite groups is the Burn-

side group formalism, introduced in the work Kresch and Tschinkel (2022b) of A. Kresch

and Yu. Tschinkel and generalizing the birational symbols groups of Kontsevich, Pestun, and

Tschinkel (2019). Here, we will limit ourselves to a rough sketch of this approach.

In Kresch and Tschinkel (2022b), the symbols group Symbn(G) was defined as the free

abelian group generated by symbols (H,R ýC,β ). Here, H ⊂ G is an abelian subgroup, R ⊂
CG(H)/H is a subgroup, where CG(H) denotes the centralizer of H, C/C is a finitely gener-

ated extension of transcendence degree d ⩽ n faithfully acted on by R, and β = (b1, . . . ,bn−d)

is a sequence of nontrivial characters of H, generating Hom(H,C∗). The quotient of Symbn(G)

by some involved conjugation and blow-up relations (Kresch & Tschinkel, 2022b, Section 4)

gives the equivariant Burnside group Burnn(G).

Now, let (X ,G) be a smooth n-dimensional projective variety with a generically free action

of G. By (Reichstein & Youssin, 2000, Theorem 3.2) or (Hassett, Kresch, & Tschinkel, [2021]

©2021, Section 7.2), the action of G can always be brought to a standard form via equivariant

blow-ups. This means that there is a G-invariant simple normal crossing divisor ∆ ⊂ X such

that G acts freely on X \∆, and for every g ∈ G and every irreducible component D of ∆ one

has either g(D) = D or g(D)∩D = ∅. Let {D j} j∈J be the set of irreducible components

with non-trivial (and hence cyclic) stabilizers H j ⊂ G, considered up to conjugation in G. For

each j ∈ J , the elements of G that do not move D j to another component of ∆, give rise to

a subgroup R j ⊂ CG(H j)/H j. Consider the subset I ⊂ J corresponding to those divisors,

together with the respective R j-action, that cannot be obtained via equivariant blow-ups of any

standard model of any G-variety (such divisors were called incompressible). Finally, let b j be

the character of H j in the normal bundle to D j. The formal sum

[X ý G] = ∑
i∈I

(Hi,Ri ýC(Di),bi) , (2)

viewed as an element of Burnn(G), turns out to be a well-defined G-birational invariant (Kresch

& Tschinkel, 2022b, Theorem 5.1).
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There exist different versions of symbols groups and corresponding Burnside-type obstruc-

tions, see e.g. (Tschinkel, Yang, & Zhang, 2023, Section 3) for an overview. The first applica-

tions of this formalism yields non-linearizable cyclic actions on certain cubic fourfolds (Hassett

et al., [2021] ©2021, 6); a new proof (Hassett et al., [2021] ©2021, 7.6) of non-linearizability

of minimal D6-action on the sextic del Pezzo surface (this is an Iskovskikh’s example 3.4.13);

non-conjugacy2 of certain intransitive and imprimitive subgroups of PGL3(C) and PGL4(C)
in Cr2(C) and Cr3(C), respectively (by showing that the corresponding actions give different

classes in Burn2 and Burn3), see (Kresch & Tschinkel, 2022c, Sections 10-11) and (Tschinkel

et al., 2023, Sections 7-8). Furthermore, there are examples of non-linearizable actions on

some 3-dimensional quadrics (Tschinkel et al., 2023, Section 9), and classification (obtained

through combinations of various techniques) of non-linearizable actions on some prominent

threefolds, such as the Segre cubic, the Burkhardt quartic, and some singular cubic threefolds

Cheltsov, Marquand, et al. (2024); Cheltsov, Tschinkel, and Zhang (2023b, 2024).

Some other equivariant birational invariants were recently proposed by L. Esser (the dual

complex, see Esser (2024)), T. Ciurca, S. Tanimoto and Yu. Tschinkel (an equivariant version

of the formalism of intermediate Jacobian torsor obstructions, see Cheltsov, Tschinkel, and

Zhang (2024); Ciurca et al. (2024)), and by J. Blanc, I. Cheltsov, A. Duncan and Yu. Prokhorov

(the Amitsur subgroup, see Blanc, Cheltsov, Duncan, and Prokhorov (2023)). We refer the

reader to these works for details.

1.6.4 Noether-Fano inequalitiy

The cornerstone of birational rigidity and birational solidity is the classical Noether–Fano in-

equality, which reveals a close connection between canonical singularities of log pairs and the

existence of birational maps between Mori fibre spaces. In fact, the decomposition theorem for

G-Sarkisov links from Iskovskikh (1996) described above is a consequence of Noether–Fano

inequality. We will recall it in the equivariant setting, as is in (Cheltsov & Shramov, 2016a,

Theorem 3.2.6). Let X be a projective variety with at most klt singularities and G a finite

subgroup of Aut(X). We use the language of the (equivariant) minimal model program; see,

e.g., (Cheltsov & Shramov, 2016b, I.2). Throughout the paper, a log pair (X ,MX) refers to a

pair consisting of X with a non-empty mobile G-invariant linear system MX on X consisting

of Q-Cartier divisors. Let π : X̃ → X be a resolution of singularities, and

M X̃ := π
∗(KX +MX)−KX̃ .

For a prime divisor D⊂ Supp(M X̃), the log discrepancy of the log pair (X ,MX) at D is defined

as the rational number

a(X ,MX ;D) = 1−multD(M X̃).

2. Note that this cannot be approached via the Bogomolov–Prokhorov invariant, which vanishes for linear actions.
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Let p ∈ X be a point. We say that (X ,MX) is canonical (resp. log-canonical, klt) at p if for

any prime divisor E on X̃ such that p ∈ π(E), we have a(X ,MX ;E)≥ 1 (resp. ≥ 0, > 0). The

non-canonical (resp. non-log-canonical, non-klt) locus of (X ,MX) is the union of points where

(X ,MX) is not canonical (resp. not log-canonical, not klt).

An irreducible subvariety Z ⊂X is said to be a center of non-canonical (resp. non-log-canonical,

non-klt) singularities of (X ,MX) if there exists a resolution π : X̃ → X and a prime divisor E

on X̃ such that π(E) = Z and a(X ,MX ;E) < 1 (resp. < 0, ≤ 0). For simplicity, we also refer

to it as a non-canonical (resp. non-log-canonical, non-klt) center.

Theorem 1.6.7 (Noether–Fano inequality). Let X be a Fano variety with terminal singularities,

G a finite subgroup of Aut(X) such that rk(ClG(X)) = 1. Assume that there exists a G-

equivariantly birational map χ : X 99KV , where V is a variety with a generically free G-action

such that one of the following holds:

1. either V is also a Fano variety with terminal singularities such that rk(ClG(V )) = 1;

2. or there exists a G-equivariant morphism V → Z with connected fibres such that its

general fibre is a Fano variety, and Z is a normal projective variety with dim(V ) >

dim(Z)> 0.

In the former case, let MX be the strict transform on X of the linear system |−nKV | for n ≫ 0.

In the latter case, let MX be the strict transform on X of the linear system |HV |, where HV

is the pullback on V of a very ample divisor on Z whose class in Pic(Z) is G-invariant. Let

λ ∈ Q be such that λMX ∼Q −KX . Then, if χ is not biregular, the log pair (X ,λMX) has

non-canonical singularities.

Theorem 1.6.7 will be crucial in Chapter 4. We will also make extensive use of the following

statements related to singularities of pairs. The α-invariant is a number associated to X which

corresponds to the global log-canonical threshold introduced in Tian (1987) in a different

language. When X is a Fano variety with dim(X) ≥ 2, the G-equivariant α-invariant of X

is the number

αG(X) = sup

{
λ ∈Q

∣∣∣∣∣ the pair (X ,λD) is log-canonical for any

G-invariant effective Q-divisor D ∼Q −KX

}
.

We compute this invariant for some G-surfaces in Sections 4.3 and 4.4. We will use a few

results about singularities.

Theorem 1.6.8 ((Pukhlikov, 2013, Theorem 2.1)). Let X be a threefold and MX a non-empty

mobile linear system on X . If a smooth point p ∈ X is a non-canonical center of the pair

(X ,λMX) for some positive rational number λ , and D1,D2 are two general elements in MX ,

then

multp(D1 ·D2)>
4

λ 2 .
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Theorem 1.6.8 is essentially a corollary of the following theorem due to Corti and the inversion

of adjunction; see also (Cheltsov & Shramov, 2016b, Section 2.5).

Theorem 1.6.9 ((Corti, 2000, Theorem 3.1)). Let S be a surface and MS a non-empty mobile

linear system on S. If a smooth point p ∈ S is a non-log-canonical center of the pair (S,λMS)

for some positive rational number λ , and D1,D2 are two general elements in MS, then

multp(D1 ·D2)>
4

λ 2 .

In many situations, Theorem 1.6.8 gives us a desired bound. However, in certain situations

(e.g., in Propositions 4.5.22 and 4.6.12), a sharper result is needed:

Theorem 1.6.10 (Demailly and Pham (2014)). Let S be a smooth surface, p ∈ S a point, and

MS a non-empty mobile linear system on S. Assume that p is a non-log-canonical center of

the log pair (S,λMS) with some positive rational number λ . Let m = multp(MS). Then for two

general elements D1,D2 ∈ MS, we have

multp(D1 ·D2)>
m2

λ 2(m−1)
.

We will also use the following technical observation.

Remark 1.6.11 ((Cheltsov, Sarikyan, & Zhuang, 2023, Remark 3.6)). Let X be a threefold

with terminal singularities, p ∈ X a smooth point, MX a mobile linear system, and λ ∈ Q>0.

If p is a non-canonical center of the log pair (X ,MX), then p is a non-log-canonical center of

the log pair (X , 3
2MX).

The Nadel vanishing theorem will give us bounds of the size of 0-dimensional non-canonical

centers.

Theorem 1.6.12 ((Lazarsfeld, 2003, Theorem 9.4.8)). Let X be a projective variety with at

most klt singularities, D an effective Q-divisor on X , L a Cartier divisor such that KX +D+

A ∼Q L for some ample divisor A, and I (X ,D) the multiplier ideal sheaf of D. Then

H i(X ,OX(L)⊗I (X ,D)) = 0 for i ≥ 1.

Lastly, we introduce some terminology. For a G-invariant subvariety Z ⊂ X , we say that Z is

G-irreducible if G acts transitively on the irreducible components of Z. Let H be a general

hyperplane section on X . We denote by |nH − Z| the linear system consisting of degree n

hyperplane sections on X passing through Z. Often, we refer to this as the linear system

|nH −Z|, although Z is not necessarily a divisor.
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1.7 Group theory

This Section is entirely devoted to auxiliary results from the theory of finite groups. These

results are either elementary (nevertheless, we provide proofs for the reader’s convenience)

or pertain to the classical representation theory.

Notations 1.7.1. Throughout our paper, we use the following standard notations:

— ωn = exp(2πi/n), where n ∈ N;

— Zn is a cyclic group of order n;

— V4 ≃ Z2 ×Z2 is Klein’s Vierergruppe;

— Q8 is the quaternion group;

— Dn is the dihedral group of order 2n;

— Sn is the permutation group of degree n;

— An is the alternating group of degree n;

— Hol(G) = G⋊Aut(G) is the holomorph of a group G;

— F5 = Hol(Z5) is the Frobenius group of order 20;

— D(A) is the generalized dihedral group over an abelian group A;

— A•B is an extension (not necessarily split) of B with a normal subgroup A;

— A×Q B is a fibred product of A and B over their common homomorphic image Q; see

Section 1.7.3 for more details;

— G ≀Sn is the wreath product, i.e. the semi-direct product Gn⋊Sn, where Sn acts on Gn

by permuting the factors;

— CG(H) is the centralizer of H ⊂ G in G;

— NG(H) is the normalizer of H ⊂ G in G;

— Z(G) is the centre of a group G;

— Inn (G) is the inner automorphism group of a group G.

1.7.1 Klein’s classification

First, we recall the following classical result of Felix Klein.

Proposition 1.7.2 (Klein (2019)). Every finite subgroup of PGL2(C) is isomorphic to Zn, Dn

(where n ⩾ 1), A4, S4 or A5. Moreover, there is only one conjugacy class for each of these

groups.

In what follows, we will also need the following more general result, which describes the

algebraic subgroups of PGL2(C).

Theorem 1.7.3 ((Kaplansky, 1957, p. 31), (Nguyen, van der Put, & Top, 2008, Theorem 1)).

Up to conjugation, every algebraic subgroup of PGL2(C) is one of the following:

1. PGL2(C).
2. A finite subgroup from the Klein’s list: Zn,Dn,A4,S4,A5.
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3. The image under the natural projection π : SL2(C)↠ PSL2(C)≃ PGL2(C) of the Borel

(i.e. maximal solvable) subgroup

B =

{[
a b

0 a−1

]
: a ∈ C∗,b ∈ C

}
⊂ SL2(C).

4. The image under the natural projection π : SL2(C)↠ PSL2(C)≃ PGL2(C) of the infin-

ite dihedral subgroup

D∞ =

{[
a 0

0 a−1

]
: a ∈ C∗

}
∪

{[
0 −b

b−1 0

]
: b ∈ C∗

}
.

Remark 1.7.4. In case (3), let B = π(B), and consider the unipotent (abelian) subgroup

U =


[

1 b

0 1

]
: b ∈ C

⊂ B =


[

a b

0 1

]
: a ∈ C∗,b ∈ C


The elements of B can be viewed as affine automorphisms of P1, locally given by z 7→
az+ b. The map which sends every such automorphism to a ∈ C∗ is a well-defined group

homomorphism, which induces a short exact sequence

1 U B C∗ 1. (3)

In the case (4), letting D∞ = π(D∞), we observe that the diagonal matrices diag{a,a−1},

where a ∈ C∗, constitute the connected component of the identity D◦
∞ and are mapped by π

to a group isomorphic to C∗. The other matrices are mapped to involutions. Furthermore, one

has D∞ ≃ C∗⋊Z2, where the action is by inversion: t 7→ t−1, i.e. D∞ ≃ Hol(C∗).

Let us fix the following presentations (Huppert, 1967, §19):

— Zn ≃ ⟨r | rn = id⟩.
— Dn ≃ ⟨r,b | rn = b2 = (rb)2 = id⟩.
— A4 ≃ ⟨a,b,c | a2 = b2 = c3 = id, cac−1 = ab = ba, cbc−1 = a⟩. Note that ⟨a,b⟩ ≃ V4 is

the derived subgroup of A4 and one has A4 ≃ ⟨a,b⟩⋊ ⟨c⟩.
— S4 ≃ ⟨a,b,c,d | a2 = b2 = c3 = d2 = id, cac−1 = dad = ab = ba, cbc−1 = a, bd =

db, dcd = c−1⟩. Here, one finds a unique copy of A4 ≃ ⟨a,b,c⟩ inside, which is the

derived subgroup of S4, and one has S4 ≃ ⟨a,b,c⟩⋊ ⟨d⟩.
— A5 ≃ ⟨e, f | e5 = f 2 = (e f )3 = id⟩.

Notations 1.7.5. Let us fix the following identifications (see e.g. (Faber, 2023, Theorem C)):

r 7→ Rn =

[
1 0

0 ωn

]
, a 7→ A =

[
1 0

0 −1

]
, b 7→ B =

[
0 1

1 0

]
, c 7→ C =

[
i −i

1 1

]
,
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d 7→ D =

[
1 −i

i −1

]
, e 7→ E =

[
ω5 0

0 1

]
, f 7→ F =

[
1 1−ω5 −ω

−1
5

1 −1

]
.

Then these identifications define embeddings of Zn, Dn, A4, S4 and A5 into PGL2(C).

The following description of orbits on P1 is classical:

Proposition 1.7.6 ((Springer, 1977, 4.4)). Let G be a finite subgroup of PGL2(C). One has

the following.

1. If G ≃ Zn then it has 2 fixed points on P1, namely [1 : 0] and [0 : 1], and any other point

generates an orbit of length n.

2. If G ≃ Dn, then it has one orbit of length 2, namely [1 : 0] and [0 : 1], and one orbit of

length n generated by [1 : 1]. Any other point generates an orbit of length 2n.

3. If G ≃ A4 then it has two orbits of length 4 and one orbit of length 6. All other orbits are

of length 12.

4. If G ≃S4 then it has one orbit of length 6, one orbit of length 8 and one orbit of length

12. All other orbits are of length 24.

5. If G ≃ A5 then it has one orbit of length 12, one orbit of length 20, and one orbit of

length 30. All other orbits are of length 60.

1.7.2 Blichfeldt’s classification

Since we are interested in linearization of finite subgroups of Cr2(C), let us first recall the

classification of finite subgroups of PGL3(C), which is essentially due to H. Blichfeldt.

Definition 1.7.7 (Blichfeldt (1917)). We call a subgroup ι : G ↪→ GLn(C) intransitive if the

representation ι is reducible, and transitive otherwise. Further, a transitive group G is called

imprimitive if there is a decomposition Cn =
⊕m

i=1Vi into a direct sum of subspaces and G

transitively acts on the set {Vi}. A transitive group G is called primitive if there is no such

decomposition. Finally, we say that G ⊂ PGLn(C) is (in)transitive or (im)primitive if its lift to

GLn(C) is such a group.

So, intransitive subgroups of PGL3(C) come in two types:

I1 The representation of G in GL3(C) is a direct sum of three 1-dimensional represent-

ations. In other words, G fixes 3 non-collinear points on P2 and hence G ≃ Zn ×Zm,

where n,m ⩾ 1, is a diagonal abelian group.

I2 The representation of G in GL3(C) is a direct sum of 1-dimensional and 2-dimensional

representations. In other words, G fixes a point p ∈ P2, and hence there is an embed-

ding G ↪→ GL(TpP2) ≃ GL2(C). Obviously, every finite subgroup of GL2(C) gives rise

to an intransitive subgroup of PGL3(C).

Assume that G is imprimitive. Then C3 = V1 ⊕V2 ⊕V3, where V1 ≃ V2 ≃ V3 ≃ C and G acts

transitively on the set {V1,V2,V3}. Hence G fits into the short exact sequence

1 A G B 1
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where B ≃ Z3 or B ≃S3, and A ⊂ PGL3(C) is an intransitive subgroup of type I1.

Finally, there are 6 primitive subgroups of PGL3(C).

GAP Order Isomorphism class Comments

Primitive subgroups

[36,9] 36 (Z3 ×Z3)⋊Z4 subgroup of the Hessian group

[72,41] 72 (Z3 ×Z3)⋊Q8 subgroup of the Hessian group

[216,153] 216 (Z3 ×Z3)⋊SL2(F3) the Hessian group

[60,5] 60 A5 the simple icosahedral group

[168,42] 168 PSL2(F7) the simple Klein group

[360,118] 360 A6 the simple Valentiner group

1.7.3 Goursat’s lemma

Let Γ1 and Γ2 be two finite groups. Finite subgroups of the direct product Γ1 ×Γ2 can be

determined using the classical Goursat’s lemma. Recall that the fibre product of two groups

G1 and G2 over a group Q is defined as

G1 ×Q G2 = {(g1,g2) ∈ G1 ×G2 : α(g1) = β (g2)},

where α : G1 →Q and β : G2 →Q are surjective homomorphisms. Note that the data defining

G1 ×Q G2 is not only the groups G1, G2 and Q but also the homomorphisms α , β .

Lemma 1.7.8 (Goursat’s lemma, (Goursat, 1889, p. 47)). Let Γ1 and Γ2 be two finite groups.

There is a bijective correspondence between subgroups G⊆Γ1×Γ2 and 5-tuples {G1,G2,H1,H2,ϕ},

where G1 is a subgroup of Γ1, H1 is a normal subgroup of G1, G2 is a subgroup of Γ2, H2

is a normal subgroup of G2, and ϕ : G1/H1
∼−→ G2/H2 is an isomorphism. Namely, the group

corresponding to this 5-tuple is

G = {(g1,g2) ∈ G1 ×G2 : ϕ(g1H1) = g2H2}.

Conversely, let G⊆Γ1×Γ2 be a subgroup. Denote by p1 : Γ1×Γ2 →Γ1 and p2 : Γ1×Γ2 →Γ2

the natural projections, and set G1 = p1(G), G2 = p2(G). Set

H1 = ker p2|G = {(g1, id) ∈ G, g1 ∈ Γ1}, H2 = ker p1|G = {(id,g2) ∈ G, g2 ∈ Γ2},

whose images by p1 and p2 define normal subgroups of G1 and G2, respectively (denoted the

same). Let π1 : G1 →G1/H1 and π2 : G2 →G2/H2 be the quotient homomorphisms. The map

ϕ : G1/H1 → G2/H2, ϕ(g1H1) = g2H2, where g2 ∈ Γ2 is any element such that (g1,g2)∈ G, is

an isomorphism. Furthermore, G = G1 ×Q G2, where Q = G1/H1, α = π1, and β = ϕ−1 ◦π2.
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Lemma 1.7.9. In the above notation, any subgroup G ⊆ Γ1 × Γ2 fits into the short exact

sequence

1 H1 ×H2 G Q 1

Proof. Indeed, the restriction of the homomorphism α ×β : G1 ×G2 → Q×Q to G has the

kernel H1 ×H2 and the image is isomorphic to {(t, t) ∈ Q×Q} ≃ Q.

Remark 1.7.10. We will often use explicit generators to describe a fibre product. They are

given as follows. Let S be a subset of G1 such that α(S) = Q. Then the group G1 ×Q G2 is

generated by kerα ×kerβ , and {(g1,g2),g1 ∈ S,α(g1) = β (g2)}.

1.7.4 Actions on sets

We will use several elementary lemmas about group actions on a set.

Lemma 1.7.11. Let A and B be two finite groups, and G ⊂ A×B be a subgroup such that

the natural projection G → A is surjective. Assume that A acts on a set X and B acts on a set

Y . Consider the induced action of G on X ×Y . Then the length of any orbit of G in X ×Y is

divisible by the length of some orbit of A on X .

Proof. Pick a point (x0,y0) ∈ X ×Y and consider its G-orbit Σ = {(ax0,by0) : (a,b) ∈ G}.

Consider the projection pX : X ×Y → X . We claim that the set ΣX = pX(Σ) ⊂ X is an A-

orbit. Firstly, it is clearly A-invariant: taking any x ∈ ΣX there exists y ∈ Y such that (x,y) ∈ Σ.

By our assumption, for any a ∈ A there exists b ∈ B such that (a,b) ∈ G. Then (ax,by) ∈ Σ

and therefore ax ∈ ΣX . Secondly, ΣX is clearly a minimal A-invariant set. For if there is a

proper A-invariant subset Σ′
X ⊊ ΣX , then taking two elements x′ ∈ Σ′

X , x ∈ ΣX \Σ′
X and their

lifts (x′,y′) ∈ Σ, (x,y) ∈ Σ, there exists an element (a,b) ∈ G such that (ax′,by′) = (x,y). In

particular, x = ax′ /∈ Σ′
X ; but this contradicts Σ′

X being A-invariant.

It remains to show that for each x1 ∈ ΣX , the cardinality of the fibre p−1
X (x1)∩Σ is the same

and equals to the cardinality of p−1
X (x0)∩Σ. Indeed, there exists a ∈ A such that ax0 = x1.

Pick any lift (a,b) ∈ G and consider the map of finite sets

p−1
X (x0)∩Σ → p−1

X (x1)∩Σ, (x0,y) 7→ (ax0,by) = (x1,by),

which is obviously well defined and injective. The same holds for the map p−1
X (x1)∩ Σ →

p−1
X (x0)∩Σ which sends (x1,y) to (a−1x1,b−1y) = (x0,b−1y). This finishes the proof.

Lemma 1.7.12. Let G be a finite group and H ⊂ G be a normal subgroup of finite index

[G : H]. Assume that G acts on a set X and let Σ be an orbit of G. Write Σ = Σ1 ⊔ . . .⊔Σn as

the disjoint union of H-orbits Σi. Then all Σi have the same length and n divides [G : H]. In

particular, the length of Σ is always divisible by the length of some orbit of H.
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Proof. Indeed, the quotient group G/H acts on the space of orbits Σ/H, and this action is

transitive. Therefore, by the Orbit-Stabilizer Theorem, [G : H] is divisible by the cardinality of

Σ/H, i.e. by n. Consider any two H-orbits Σi and Σ j, let xi ∈ Σi and x j ∈ Σ j, so that Σi = Hxi

and Σ j = Hx j. By transitivity of G on Σ, there exists g ∈ G such that gxi = x j. Then the map

Σi → Σ j, y 7→ gy is a bijection.

1.7.5 Generalized dihedral groups

We recall the following elementary fact.

Lemma 1.7.13. Subgroups of the dihedral group Dn = ⟨r,s | rn = s2 = (sr)2 = id⟩ are the

following:

Cyclic ⟨rd⟩ ≃ Zn/d , and ⟨rks⟩, where d divides n and 0 ⩽ k ⩽ n−1.

Dihedral ⟨rd ,rks⟩ ≃ Dn/d , where d < n divides n, and 0 ⩽ k ⩽ d −1.

All cyclic subgroups ⟨rd⟩ are normal, one has Dn/⟨rd⟩ ≃ Dd , and these are all normal sub-

groups when n is odd. When n is even, there are two additional normal dihedral subgroups of

index 2, namely ⟨r2,s⟩ and ⟨r2,rs⟩.
Let A be an abelian group. Recall that the generalized dihedral group D(A) is the semi-direct

product A⋊Z2, where Z2 acts by inverting the elements of A. In particular, for A ≃ Zn one

has D(Zn)≃ Dn.

Lemma 1.7.14. Let n,m ⩾ 3 be odd integers. Then one has the following:

1. Any group G = Dn ×Q Dm is either Dn ×Dm, or a generalized dihedral group D(A),

where A is a direct product of at most two cyclic groups.

2. Furthermore, G ≃ D(A) admits a faithful 2-dimensional representation if and only if A is

cyclic, so that G is isomorphic to a dihedral group.

Proof. Fix the presentations Dn = ⟨r1,s1 | rn
1 = s2

1 = (s1r1)
2 = id⟩, Dm = ⟨r2,s2 | rm

2 = s2
2 =

(s2r2)
2 = id⟩. We then have the following possibilities for G:

(i) Q ≃ id. In this case, Lemma 1.7.9 implies that G ≃ Dn ×Dm.

(ii) Q ≃ Z2. Since n and m are odd, Lemma 1.7.9 and Lemma 1.7.13 show that G is an

extension of Z2 by A = Zn ×Zm. Let τ ∈ G be an element mapped to the generator of

Q. It necessarily belongs to Dn ×Dm \A and, being in the fibre product, is of the form

(s1rk
1,s2rl

2). The conjugation by τ induces an inversion on A, hence the claim.

(iii) Q ≃ Dq, where q divides both n and m. Then the group G fits into the short exact

sequence

1 Zn/q ×Zm/q G Dq 1,
ψ

where the groups Zn/q and Zm/q are generated by rq
1 and rq

2, respectively. Let A =

ψ−1(Zq). This is an index 2 subgroup in G of odd order; therefore, all its elements are

of the form (rk
1,r

l
2). Hence A is a subgroup of Zn ×Zm ⊂ Dn ×Dm. As in the previous

case, we conclude that G ≃ D(A).
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To prove the second claim, it is enough to notice that Z(D(A)) = id for any non-trivial A⊂Zn×
Zm, since n and m are odd. In particular, if G admits a faithful 2-dimensional representation,

then G can be embedded in PGL2(C), hence A is a cyclic group. The converse is obvious.



Chapter 2

G-solid rational surfaces

"Mathematics is not about waiting for the storm to pass, it’s about learning how to dance in the rain."

Seneca, a math version – especially fitting in Edinburgh.

We classify G-solid rational surfaces over the field of complex numbers for finite-group actions.

The results presented in this chapter have been published in European Journal of Mathemat-

ics, see Pinardin (2024).

2.1 Introduction

We are interested in the equivariant birational geometry of rational surfaces over the field of

complex numbers for finite-group actions. Let S be a rational surface, and G be a finite group

acting faithfully and biregularly on S. Let rk(PicG(S)) denote the rank of the G-invariant part

of the Picard group of S. The G-equivariant Minimal Model Program applied to a resolution of

singularities of S implies that S is G-birational to a G-Mori fibre space, that is, a G-surface in

one of the following two cases:

• A G-del Pezzo surface, namely a del Pezzo surface S such that −KS is ample and

rk(PicG(S)) = 1,

• A G-conic bundle, i.e. there is a G-equivariant morphism S → P1 with general fibre

isomorphic to P1, and such that rk(PicG(S)) = 2.

We say that S is G-solid if it is not G-birational to any G-conic bundle.

Main Theorem 2.1.1. Let S be a G-del Pezzo surface of degree d = K2
S . Then S is G-solid if

and only if:

• d ≤ 3.

• d = 4 and G does not fix a point on S in general position.
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• d = 5 and G is not isomorphic to Z5 or D5.

• d = 6 and G is not isomorphic to Z6, S3, or D6.

• d = 8, S ∼= P1 ×P1, and, up to conjugation in Aut(S), either

– G has a subgroup isomorphic to A4,

– or G4 ⊂ G and G ̸⊂ G16, for two specific groups G4 and G16.

• S ∼= P2, the group G does not fix a point on S, and is not isomorphic to S4 or A4.

For S = P2, we also prove the following result.

Theorem 2.1.2. Let G be a finite subgroup of Aut(P2) isomorphic to A4 or S4. The only G-

Mori fibre spaces G-birational to P2 are P2 and a del Pezzo surface of degree 5 with a G-conic

bundle structure.

In particular, for G ∼= A4 and for G ∼= S4, the projective plane is not G-birational to any

Hirzebruch surface Fn.

A recent motivation for our work is given in Tschinkel et al. (2023). Both G-solid surfaces

and surfaces which are not G-birational to a Hirzebruch surface are classes of divisors on

threefolds which give rise to Incompressible Divisorial Symbols, a modern tool used in the

formalism of Burnside groups to distinguish birational types of group actions. An example of

an application of these techniques by Cheltsov, Tshinkel, and Zhang can be found in Cheltsov,

Tschinkel, and Zhang (2023b).

Finally, let us point out that the classification of G-solid Fano varieties is widely open starting

from dimension 3. Some work has been achieved in the case of toric Fano threefolds, see, for

example, Cheltsov, Dubouloz, and Kishimoto (2023), Cheltsov, Sarikyan, and Zhuang (2023),

and Cheltsov, Tschinkel, and Zhang (2023b).

2.2 Del Pezzo surfaces of degree at most 5

Recall that by Manin–Segre’s theorem 1.6.1, del Pezzo surfaces of degree one are birationally

superrigid, and del Pezzo surfaces of degrees two and three are birationally rigid. For K2
S = 4,

the result is essentially a corollary of the classification of G-links in Iskovskikh (1996).

Proposition 2.2.1. Let G be a subgroup of Aut(S) such that rk(PicG(S)) = 1, where S is a

del Pezzo surface of degree 4. The following conditions are equivalent.

• S is G-rigid,

• S is G-solid,

• G does not fix a point on S outside of the (−1)-curves.
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Proof. Using the classification of Sarkisov links in Iskovskikh (1996), we see that there are

three possible links starting from S. The first is the blow-up of a point not lying on a (−1)

curve, leading to a G-conic bundle. The second is a Geiser involution, centered at an orbit of

length 2, and the last is a Bertini involution, centered at an orbit of length 3. But as mentioned

in Yasinsky (2023), Geiser and Bertini involutions lead to G-isomorphic surfaces.

Starting from degree five, a deeper study of the group actions on del Pezzo surfaces is re-

quired. Recall that, up to isomorphism, there is only one smooth del Pezzo surface S of degree

5, given by the blow-up of P2 in four points in general position. Its group of automorphisms is

isomorphic to S5, and its description can be found in Blanc (2006).

Lemma 2.2.2 (Dolgachev and Iskovskikh (2009)). Let G ⊂ Aut(S). Then rk(PicG(S)) = 1 if

and only if G is isomorphic to S5, A5, D5, Z5, or F5 = Z5 ⋊Z4
1.

Recall the groups for which the G-solidity of S is known. The cases of A5 and S5 were solved

by Cheltsov and G = F5 by Wolter.

Proposition 2.2.3 (Cheltsov (2008), Cheltsov (2014)). If G ⊂ Aut(S) is isomorphic to A5 or

S5, then S is G-superrigid.

Proposition 2.2.4 (Wolter (2018)). If G ⊂ Aut(S) is isomorphic to F5, then S is G-solid.

What remains to study is the G-solidity of S for G isomorphic to Z5 or D5. We will manage to

avoid studying the G orbits on S, and we only need to use the G-birational geometry of P2.

Proposition 2.2.5. If G is isomorphic to Z5 or D5, then S is not G-solid.

Proof. Consider the matrices M =

1 0 0

0 ω5 0

0 0 ω
−1
5

 ∈ PGL3(C), where ω5 is a primitive fifth

root of unity, and N =

1 0 0

0 0 1

0 1 0

. We have H = ⟨M⟩ ∼=Z5, and H ′ = ⟨M,N⟩ ∼= D5, under the

action of both groups, the point (1 : 1 : 1) has an orbit of length 5 in general position. Blowing

up this orbit and contracting the proper transform of the conic passing through the five points

gives a G-link from P2 to a del Pezzo surface of degree 5, for any G ∈ {H,H ′}. On the other

hand, for any G ∈ {H,H ′}, the point (1 : 0 : 0) ∈ P2 is fixed under the action of G. Hence, we

can blow it up and get a G-link to the Hirzebruch surface F1, with a G-conic bundle structure.

Since Z5 and D5 are unique in S5 up to conjugacy, we conclude that S is not G-solid for any

subgroup G of Aut(S) isomorphic to Z5 or to D5.

1. This is the group of GAP ID (20,3).
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2.3 Del Pezzo surfaces of degree 8

Let S = P1 ×P1. Recall that this is the only del Pezzo surface of degree 8 we have to study,

since the blow-up of P2 at a point cannot be a G-del Pezzo surface. The automorphism

group of S is isomorphic to (PGL2(C)×PGL2(C))⋊Z2, where Z2 acts on the direct product

PGL2(C)× PGL2(C) by permuting its factors. We will use affine coordinates x and y and

have the two PGL2(C) components act on them, respectively. The action of Z2 is given by

the permutation of x and y. For example, an automorphism written (x0 : x1)× (y0 : y1) 7→ (y1 :

y0)× (x0 : x1) will be denoted as (1
y ,x). To begin with, we will give an example of a group

G ⊂ Aut(S) such that the surface S is not G-solid.

Example 2.3.1. Let π1 and π2 be the two canonical projections from S to P1. If two points

P and Q are such that πi(P) ̸= πi(Q) for i = 1 and i = 2, we say that they are in general

position. Assume that a subgroup G ⊂ Aut(S) fixes two points in general position. Then there

is a G-birational map from S to the G-conic bundle F1, which decomposes into two G-links as

follows:

Z7
σ1

��

σ2

  

F1

��

σ3

~~
S // P2 P1

where σ1, σ2 and σ3 are blow-ups at a point. Here is a list of explicit cases in which it occurs:

• If G = ⟨s, tn⟩, with s = (y,x), and t = (ωnx,ω−1
n y), then G ∼= Dn.

• If G = ⟨σ ,τn⟩, with σ = (y,−x) and τn = (ix, iy), then G ∼= Q8.

Remark 2.3.2. Let ϕ : S 99K S′ be a G-link centred at k points. Using the classification of

Sarkisov links in Iskovskikh (1996), we see that, if k ≥ 6, then ϕ is either a Bertini or a Geiser

involution. Once again, as mentioned in Yasinsky (2023), such link leads to a G-isomorphic

surface. It follows that if S′ is not G-isomorphic to S, then ϕ is of one of the following forms.

Z7

��   
S // P2

Z6

�� ��
S P1

Z5

��   
S // Z6

k = 1 k = 2 k = 3

Z4

�� ��
S // S

Z3

��   
S // Z5

k = 4 k = 5

A surface denoted by Zk is a del Pezzo surface of degree k. We deduce that if G does not

have any orbit of length k ≤ 5, then S is G-rigid. One can mention that every pair of points

in the centre of one of the links of Remark 2.3.2 must be in general position, as defined in

Example 2.3.1.
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2.3.1 Toric subgroups of Aut(P1 ×P1)

We can embed (C∗)2 as a dense torus in S by the map ι : (C∗)2 ↪→ S, (a,b) 7→ (1 : a)× (1 :

b), whose image will be called T. Moreover, any dense torus in S is equal to T up to an

automorphism of S. The action of (C∗)2 on itself by translation extends to a faithful action on

the whole variety S, identifying (C∗)2 with the subgroup T= {(ax,by),a,b ∈ C∗} of Aut(S).

Lemma 2.3.3. There is an exact sequence

1 T NAut(S)(T) D4 1.w

Proof. First, notice that NAut(S)(T) leaves T invariant. Indeed, the normalizer of T in Aut(S)

permutes the T-orbits, and T is the only one that is dense in S. The complement of T in S is

the divisor C = π
−1
1 (1 : 0)+π

−1
1 (0 : 1)+π

−1
2 (1 : 0)+π

−1
2 (0 : 1), where π1 (resp. π2) is the

canonical projection from P1 ×P1 to the left (resp. right) factor P1. The intersection number

being preserved by automorphisms, any element of NAut(S)(T) induces a symmetry of the

square formed by C, thus giving a group homomorphism w : NAut(S)(T) → D4. Finally, the

group T is the set of automorphisms that preserve each irreducible curve of the divisor C. In

other words, the kernel of w is T. Moreover, w is surjective, hence the exact sequence.

Remark 2.3.4. Notice that NAut(S)(T) is exactly the set of automorphisms that preserve the

square C. This will be useful later to prove that a subgroup G of Aut(S) is contained in

NAut(S)(T).

Let G be a subgroup of NAut(S)(T), and T = G∩T. The restriction of w to G induces the exact

sequence

1 T G W 1,w

for some subgroup W of D4.

We will call toric a subgroup of Aut(S) conjugated to a subgroup of NAut(S)(T). Consider

the automorphisms r = (1
y ,x), and s = (y,x). Both belong to NAut(S)(T), and they generate a

group isomorphic to D4, on which w restricts to an isomorphism. In Cheltsov, Dubouloz, and

Kishimoto (2023), the authors mention without proof that if G is a subgroup of NAut(S)(T) such

that rk(PicG(S)) = 1, then its image W in D4 must contain Z4. We prove this result here and

state it in a slightly stronger way, adding that an element mapped onto w(r), thus generating

Z4 in D4, is equal to r up to conjugation by an element of the torus.

Lemma 2.3.5. Let G be a toric subgroup of Aut(S) such that rk(PicG(S)) = 1. If S is G-solid,

then G is conjugated by an element of T to a subgroup of NAut(S)(T) containing r.

Proof. Since G is toric, we may assume that it is a subgroup of NAut(S)(T). The orbits of the

vertices of the square C under the action of D4 are of length 1, 2, or 4. If one of them is

fixed, the opposite vertex must be fixed as well, and we get the situation of Example 2.3.1.

In particular, the surface S is not G-solid. If no vertex is fixed, then the vertices are on the
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same orbit or form two orbits of length 2. Since rk(PicG(S)) = 1, we cannot have two orbits of

length 2, each of them consisting of two consecutive vertices of C. So these two orbits must

be formed by opposite vertices, and we deduce that there are two orbits of length 2 in general

position. We can blow up one of them to get a G-link to a G-conic bundle. Hence, the only

possibility for S to be G-solid is that all the vertices are on the same orbit. In this case, since

rk(PicG(S)) = 1, the vertices must be cyclically permuted, so w(r) ∈ W . It remains to note

that if an element g ∈ Aut(S) satisfies w(g) = w(r), then g is conjugated to r in NAut(S)(T).
Indeed, such automorphism g is of the form (a

y ,bx), for some a,b ∈ C∗. Let t = (kx, ly) ∈ T,

with k, l ∈ C∗. If l2 = 1
ab and k = bl, then we have tgt−1 = r.

Lemma 2.3.6. Let G be a subgroup of NAut(S)(T) containing r and T = G∩T. If |T |> 5, then

S is G-rigid.

Proof. The G-orbits of the points outside of the square C are of length at least T . According

to Remark 2.3.2, there is no link centered at such an orbit leading to a non-G-isomorphic

surface. Moreover, the orbit of a point lying in the square C is not in general position.

We will now begin the exhaustive study of the subgroups G of NAut(S)(T) such that rk(PicG(S))=

1, where |G∩T| ≤ 5 and r ∈ T. Let G be such a subgroup of Aut(S). First, we can eliminate

the cases where G ∼= Z3 or G ∼= Z4.

Lemma 2.3.7. Let G be a subgroup of NAut(S)(T) containing r. Then the toric part T = G∩T
cannot be isomorphic to Z3 or to Z4.

Proof. Assume that T is isomorphic to Z3 (resp. Z4). Then T is generated by an automorph-

ism t ∈ T of the form (ωnx,ωk
ny) or (ωk

nx,ωny), where n = 3 (resp. 4), and ωn is a primitive

n-th root of the unity. But by Lemma 2.4.1, we may assume that G contains the element

r = (1
y ,x), acting on T by conjugation. Since (r(ωk

nx,ωny)r−1)−1 = (ωnx,ω−k
n y), we may

assume that t is of the first form, that is, we have T =
〈
(ωnx,ωk

ny)
〉
. The automorphism

rtr−1 = (ω−k
n x,ωny) ∈ T must belong to T , and therefore must be a power (ωnx,ωk

ny). It

is impossible for n = 3 or n = 4.

Proposition 2.3.8. If T is trivial, then S is not G-solid. The options for G are the following.

• A group isomorphic to Z4, generated by r = (1
y ,x),

• A group isomorphic to D4, generated by r and s = (y,x),

• A group isomorphic to D4, generated by r and (−y,−x).

Proof. The toric part T is trivial, so the map w restricts to an isomorphism on G. Since r ∈ G,

we either have G ∼= Z4, or G ∼= D4. Assume we are in the latter case. Then G is generated

by r, and an element h such that w(h) = w(s), or in other words such that h = ts, for some

t = (ax,by) ∈ T ∼= (C∗)2. Since w restricts to an isomorphism on G, we can write hrh =

w−1(srs) = w−1(r−1) = r−1. It yields r−1 = (a2y, 1
x ), so that a2 = 1. Finally, since h is of order
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2, we get ab = 1. So the only two options for h are h = s, or h = (−y,−x). If G is generated by

r and s, the points (1,1) and (−1,−1) are fixed by the action, in which case S is not G-solid,

as in example 2.3.1. If G is generated by r and (−y,−x), the points (1,1) and (−1,−1) form

an orbit of length 2. We can G-equivariantly blow-up these points and obtain a G-link to a

G-conic bundle. Finally, if Z4 ∼= G = ⟨r⟩, then G is a subgroup of ⟨r,s⟩, so that the surface S is

not G-solid.

Proposition 2.3.9. If T ∼= Z2, there are the following possibilities and only them:

• G = ⟨t,r⟩ ∼= Z4 ×Z2, with t = (−x,−y). The surface S is not G-solid.

• G = ⟨t,r,s⟩ ∼= Z2 ×D4. The surface S is not G-solid.

• G = ⟨t,r,h⟩ ∼= Z2
2 ⋊Z4, with t and g as above, and h = (−y,x).The surface S is G-solid.

Proof. Assume that w(G) = D4. Then G is generated by r, an element t ∈ T , and an element

h such that w(h) = (ay,bx), for some a,b ∈ C∗. Since T is of order 2, the element t is

(−x,−y),(−x,y) or (x,−y). But the relation rtr−1 = t implies that the only possibility is

t = (−x,−y). The order of h can only be 2 or 4. If Ord(h) = 2, then a = b−1. Since w(hrh) =

w(r−1), we have hrh = τr−1 = τ · (y, 1
x ), for some τ ∈ T , i.e., τ = id or τ = t. But hrh =

τ · (a2y, 1
x ), which implies a = b = ±1. But since t ∈ G, we may assume that a = b = 1. The

points P1 = (1 : 1)× (1 : 1) and P2 = (1 : −1)× (1 : −1) form an orbit of length 2, and blowing

it up gives a G-link to a G-conic bundle.

Assume Ord(h) = 4. Since h2 = (abx,aby), this implies that a2b2 = 1 and ab ̸= 1, so that

ab = −1 and h = (ax,− y
a). Using again the fact that r−1 = τhrh−1 = τ · (a2y, 1

x ), for some

τ ∈ T , we deduce that h = (−y,x) or h = (y,−x). Since these possibilities only differ by t, we

may assume that h = (−y,x). The group G is generated by t, r, and h, and is isomorphic to

G ∼= Z2
2 ⋊Z4. There is no G-orbit of length l ≤ 5, therefore S is G-solid.

Finally, if w(G) = Z4, then Z2 ×Z4 ∼= G = ⟨t,r⟩ ⊂ ⟨t,r,s⟩, so that the surface S is not G-solid,

as in the case where G = ⟨t,r,s⟩ .

Proposition 2.3.10. If T ∼=Z2
2, then S is G-solid. Moreover, there are the following possibilities

for G, and only them:

• G ∼= Z2
2 ⋊Z4, generated by r and t = (−x,y),

• G ∼= Z4
2 ⋊Z2, generated by r, t = (−x,y), and s = (y,x),2

• G ∼= Z3
2 ⋊Z4, generated by r, t = (−x,y), and h = (iy, ix).3

2. This semidirect product is the group of GAP ID (32,27).
3. This semidirect product is the group of GAP ID (32,6).
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Proof. Assume that w(G)∼= Z4, so that G = ⟨T,r⟩. Since T ⊂ (C∗)2 is isomorphic to Z2
2, it is

generated by t1 = (−x,y) and t2 = (x,−y). The group G is isomorphic to Z2
2 ⋊Z4. Notice that

since rt1r−1 = t2, the group G is generated by r and t1. There is no G-orbit of length l ≤ 5.

Hence, the surface S is G-solid. If w(G) = D4, the group G contains ⟨r, t1⟩. Hence, the surface

S is also G-solid.

We now complete the list of groups whose toric part is isomorphic to Z2
2. Assume that w(G) =

D4, so that there exists an element h ∈ G such that w(h) = w(s). The order of h is 2 or 4.

If Ord(h) = 2, we get h = (ay, x
a). But r−1 = τhrh−1 = τ · (a2y, 1

x ), so τ = id and a = ±1, or

τ = t1 = (−x,y) and a = ±i. Up to composition by an element of T , we get h = s = (y,x) or

h = (−ix, iy). In the first case, we have that G = ⟨t1, t,h⟩ is isomorphic to a semidirect product

of the form Z3
2 ⋊Z4, and in the second case to a semidirect product of the form Z3

2 ⋊Z4. If

Ord(h) = 4, we get h = (ay,− x
a), which only differs from the previous case by an element of

T , so G is still ⟨t1,r,s⟩, or ⟨t1,r,(−ix, iy)⟩.

The only remaining possibility is T ∼= Z5. We will use the results in Wolter (2018) on the

G-solidity of the del Pezzo surface of degree 5.

Proposition 2.3.11. If T ∼= Z5, then G is isomorphic to the Fröbenius group F5 ∼= Z5 ⋊Z4,

generated by r and (ω5x,ω l
5y) for l = 2 or l = 3, where ω5 is a primitive fifth root of the unity.

Proof. Assume T ∼= Z5. It is generated by an element t of the form t = (ω5x,ω l
5y) or t =

(ωk
5x,ω5y). Since r(ωk

5x,ω5y)−1r−1 = (ω5x,ω−k
5 y), we may assume that t = (ω5x,ω l

5y). But

then rtr−1 = (ω5x−l,ω5y), and this element is in ⟨t⟩ if and only if l = 2 or l = 3. Assume

that there is an element h ∈ G such that w(h) = w(s). Then it is of the form (ay,bx), for some

a,b∈C∗. But hth−1 = (ω l
5x,ω5y), which is not in T . Since this subgroup is normal in G, we get

a contradiction. Hence, G is generated by (ω5x,ω l
5y) and r, with l = 2 or l = 3. In both cases,

G is isomorphic to the Fröbenius group F5 ∼= Z5 ⋊Z4. The points outside of C have orbits of

length at least 5, so the only possible G-Sarkisov that does not lead to a G-isomorphic surface

leads to a del Pezzo surface of degree 5 with invariant Picard rank 1. This surface is G-solid,

according to Wolter (2018).

2.3.2 Non-toric subgroups of Aut(P1 ×P1)

Proposition 2.3.12. Let G be a subgroup of Aut(S) such that rk(PicG(S)) = 1. Up to conjug-

ation of G in Aut(S), there is an exact sequence of the form

1 H ×D H G Z2 1.δ

where H is the projection of G onto the first and second factor PGL2(C) in (PGL2(C)×
PGL2(C))⋊Z2.
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Before proving the above result, recall that the fibre product of two groups H and H ′, over a

group D, for the surjective group morphisms ϕ : H → D and ψ : H ′ → D, is the subgroup

{(h,h′),ϕ(h) = ψ(h′)} of H × H ′. In some of our proofs, we will have to be particularly

careful about the surjective group morphisms ϕ and ψ , in which case we will use the notation

H ×D,ϕ,ψ H, instead of H ×D H.

Proof of Proposition 2.3.12. Define the group morphism δ : Aut(S)→ Z2 that sends an ele-

ment g to 1 if and only if g swaps the rulings of P1 ×P1. Since rk(PicG(S)) = 1, there must

be such an element in G, hence the surjectivity of the restriction of δ to G. The kernel of δ

in Aut(S) is PGL2(C)× PGL2(C), and therefore the kernel of the restriction of δ to G is a

subgroup of PGL2(C)×PGL2(C). Applying Lemma 1.7.8, it is of the form H ×D H ′, where H

and H ′ are subgroups of PGL2(C). For the remainder of this proof, we will denote elements of

Aut(S)∼= (PGL2(C)×PGL2(C))⋊Z2 as triples (h,h′,a), where h,h′ ∈ PGL2(C), and a ∈Z2.

Let (h,h′,0) ∈ kerδG, and let g = (a,a′,1) ∈ G. Then g(h,h′,0)g−1 = (ah′a−1,a′ha′−1,0).

Since kerδG is normal in G, it yields aH ′a−1 = H. Let α = (a, I,0), and denote ϕ : H → D,

ψ : H ′ → D the morphisms of the fibre product. We have α(H ×D,ϕ,ψ H ′)α−1 = H ×D,ϕ,ξ H,

where

ξ : H → D

h 7→ ψ(a−1ha),

and we have ker(δαGα−1) = (H ×D,ϕ,ξ H)×{e}.

Let G be a finite subgroup of Aut(S) such that rk(PicG(S))= 1, and H as in Proposition 2.3.12.

Lemma 2.3.13. If G is not toric, then H is isomorphic to A4, S4, or A5.

Proof. Assume that H is isomorphic to Zn or Dn. Then there are points P1 and P2 of P1 that

are fixed by H or that form an orbit of length 2. Consider the divisors L1 = {(P1,y),y ∈ P1},
and L2 = {(P2,y),y ∈ P1}. The divisor L1 +L2 is invariant by H ×D H. Let g ∈ G be such that

G is generated by H×D H and g. This element swaps the rulings of P1×P1, so that the divisor

D = L1 +L2 + g(L1)+ g(L2) forms a square. Let α ∈ G. Since H ×D H is normal in G and

g2 ∈ H ×D H, we can write α = hgi = gih′, for some h,h′ ∈ H ×D H and i ∈ {0,1}. We get:

α(D) = gih(L1 +L2)+gihg(L1 +L2)

= gi(L1)+gi(L2)+gi+1h′(L1 +L2)

= gi(L1)+gi(L2)+gi+1(L1)+gi+1(L2)

= D.
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Finally, the groups that fix this square are conjugated in Aut(S) to a subgroup of NAut(S)(T).
Indeed, there is an element ξ ∈ PGL2(C) sending P1 to (1 : 0) and P2 to (0 : 1). Let g =

(ξ ,ξ ,0) ∈ (PGL2(C)×PGL2(C))×Z2 ∼= Aut(S). The image of D by g is the square C as in

the proof of Lemma 2.3.3. Moreover, gGg−1 fixes C, so that gGg−1 is in NAut(S)(T), as implied

by Remark 2.3.4.

Proposition 2.3.14. If G is not toric, then there are no G-orbits of length l ∈ {1,2,3,5}.

Proof. Let P1,P2 ∈ P1, and k1,k2 be the respective lengths of their H-orbits in P1. The length

of the orbit of (P1,P2) in S under the action of H ×D H must be a common multiple l of k1 and

k2, and the length of its G-orbit is either l or 2l. Hence, by Lemma 2.3.13, it is enough to show

that there is no A4-orbit of length l ∈ {1,2,3,5} in P1.

Assume that H ≃A4. Recall that A4 is unique up to conjugation in PGL2(C). A simple way4to

see what the A4-orbits in P1 are is to use the action of A4 in PGL3(C) generated by the

matrices

0 0 1

1 0 0

0 1 0

, and

−1 0 0

0 1 0

0 0 1

. It preserves the conic x2 +y2 + z2 = 0, hence acts

on P1 faithfully. We see that there is no fixed point and that there is no orbit of length 2 since

A4 does not have any subgroup of index 2. The only subgroup of index 3 is Z2
2, generated by

the matrices

−1 0 0

0 1 0

0 0 1

 and

1 0 0

0 −1 0

0 0 1

. But it has no fixed point on the conic, hence

there is no H-orbit of length 3. Considering the order of A4, there is no H-orbit of length 5.

If H is isomorphic to S4 or A5, and since A4,S4, and A5 are unique in PGL2(C) up to con-

jugation, the lengths H-orbits in P1 must be multiples of the lengths of the A4-orbits, namely a

multiple of k /∈ {1,2,3,5}. This implies that there is no H-orbit of length k ∈ {1,2,3,5} in P1.

Summing up what we mentioned in this proof, a G-orbit can only be a multiple of k, for some

positive integer k /∈ {1,2,3,5}.

Remark 2.3.15. There is a non-toric subgroup of Aut(S) isomorphic to A4 ⋊Z2, which has

a G-orbit of length four in general position. Recall from Remark 2.3.2, that there is a G-link

centered in such an orbit. It is of the following form.

Z4

|| ""
(S,G) // (S,G′)

4. One could also generate A4 explicitly in PGL2(C), for example with the matrices
(

1 0
0 ω3

)
and

(
1 2
1 −1

)
,

where ω3 is a primitive cube root of the unity.
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By Proposition 2.3.14, the only way for S not to be G-solid, if G is a toric group with rk(PicG(S))=

1, would be for G′ in the above diagram to be non-toric. To exclude this possibility, one could

use a result of Yasinsky (2023) stating that such link must lead to a G-isomorphic surface. We

will use another method based on general group theory. It will have the advantage of giving a

simple characterization of the toric subgroups of Aut(S), making the final result much easier

to read. It turns out that a finite toric subgroup G of Aut(S) with rk(PicG(S)) = 1 cannot be

isomorphic to a non-toric subgroup of Aut(S) with rk(PicG(S)) = 1.

Proposition 2.3.16. Let G be a subgroup of Aut(S) such that rk(PicG(S)) = 1. Then G is toric

if and only if it has no subgroup isomorphic to A4.

We will step back to some general group theory to achieve the above result. To prove that a

non-toric group contains A4, it suffices to show that H ×D H contains a subgroup isomorphic

to H. The fact that a fibre product of this form contains a subgroup isomorphic to H is not

always true if we consider any group H, although many examples seem to show the contrary.

In the following example, the group H has the smallest possible order such that there are

surjective morphisms ϕ,ψ : H → D making the H ×D H a group that does not contain any

subgroup isomorphic to H.

Example 2.3.17. Let H ≃ D4 =
〈
a,b|a4 = b2 = (ab)2 = 1

〉
, take D = Z2

2, and

ϕ : a 7→ (0,1)

b 7→ (1,0)

ψ : a 7→ (1,0)

b 7→ (1,1).

Then H ×D H is isomorphic to Z2
2 ⋊Z4, and does not have any subgroup isomorphic to H.

This example exists in our context. Let H = ⟨a,b⟩, where a =

(
1 0

0 i

)
, and b =

(
0 1

1 0

)
,

and define the morphisms ϕ and ψ as above. To have a subgroup G of Aut(S) such that

rk(PicG(S)) = 1 and G ∩ (PGL2(C)× PGL2(C)) = H ×Z2
2

H, we take G =
〈

H ×Z2
2

H,g
〉

,

where g = (ω−1
8 y,ω8x), with ω8 a square root of i.

However, it is true that if a group H splits in a nice way, then a fibre product of the form H×D H

will have a subgroup isomorphic to H. It will apply in particular for the groups we need, namely

A4,S4, and A5.

Lemma 2.3.18. Let H be a group of the form N ⋊D, and ϕ,ψ : H → D be surjective group

morphisms such that ker(ϕ) = ker(ψ) = N. Then H ×D H has a subgroup isomorphic to H.

Proof. The subgroups N = ker(ψ) and D having a trivial intersection in H means that the

restriction of ψ to D is an isomorphism. So we can define the set D̃ = {(d,ψ−1 ◦ϕ(d)),d ∈
D}. It is a subgroup of H ×D H, isomorphic to D. Denote Ñ the subgroup ker(ϕ)×{id} of

H ×H. It is a subgroup of H ×D H, isomorphic to ker(ϕ) = N. Consider the projection π
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from H ×H to the first factor H. Its restriction to ÑD̃ is surjective by construction of Ñ and

D̃. If π(g,g′) = e, then g = e. But since Ñ and D̃ have a trivial intersection, e = e.e is the

only decomposition of e into a product of an element of N and an element of D. Hence,

we get (g,g′) = (e.e,e.ψ−1 ◦ϕ(e)) = (e.e), so π restricts itself to an isomorphism between

ÑD̃ ⊂ H ×D H and H.

We get the following immediate consequence.

Corollary 2.3.19. In the following cases, a fibre product of the form H ×D H contains a

subgroup isomorphic to H.

• H is simple,

• H is cyclic,

• H is isomorphic to An or Sn for some n.

We can now prove Proposition 2.3.16.

Proof of Proposition 2.3.16. Recall that the normalizer NAut(S)(T) of the torus T in Aut(S)

satisfies this exact sequence:

1 T NAut(S)(T) D4 1.w

But there is no subgroup of D4 isomorphic to a quotient of A4 by an abelian group. Hence, if

G is toric, it cannot have a subgroup isomorphic to A4. Conversely, assume that G is a finite

toric subgroup of Aut(S) with rk(PicG(S)) = 1. By Proposition 2.3.12, it satisfies the exact

sequence

1 H ×D H G Z2 1,

with H isomorphic to A4, S4, or A5. By Lemma 2.3.18, the group G has a subgroup isomorphic

to H. Hence, it has a subgroup isomorphic to A4.

Summing up the above results, we get the following.

Proposition 2.3.20. Let G be a finite non-toric subgroup of Aut(S). Then S is G-solid.

Finally, here is the classification of subgroups G of Aut(S) such that S is G-solid.

Theorem 2.3.21. Let G be a finite subgroup of Aut(S), such that rk(PicG(S)) = 1. Then S is

not G-solid if and only if G is toric, and in one of the following cases.

• The group G is not conjugated in Aut(S) to a group containing r = (1
y ,x).

• G is conjugated in Aut(P1 ×P1) to one of the following groups.

– Z4, generated by r = (1
y ,x),

– D4, generated by r, and (y,x),

– D4, generated by r and (−y,−x),

– Z4 ×Z2, generated by r and t = (−x,−y),
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– Z2 ×D4, generated by t and r as above, and h = (y,x).

Once again, Proposition 2.3.16 not only allows us to conclude about the G-solidity of the non-

toric finite subgroups of Aut(S), but also gives a way to reformulate Theorem 2.3.21 without

mentioning the toric structure of S, giving an equivalent statement which is shorter and easier

to read. Let G16 ∼= Z2 ×D4 be the subgroup of Aut(S) generated by r = (1
y ,x),s = (y,x), and

t = (−x,−y).

Theorem 2.3.22. Let G be a finite subgroup of Aut(S), such that rk(PicG(S)) = 1. Then S is

G-solid if and only if, up to conjugation in Aut(S),

• either A4 ⊂ G,

• or (r ∈ G and G ̸⊂ G16).

2.4 Del Pezzo surfaces of degree 6

Up to isomorphism, there is only one smooth del Pezzo surface of degree 6. It is obtained

by blowing up P2 in three points P1,P2 and P3 in general position. We will denote by Ei the

exceptional curve contracted to the point Pi, and by Di j the proper transform of the line passing

through Pi and Pj. Recall that there is a split exact sequence

1 T Aut(S) D6 1,w

where w is given by the action of Aut(S) on the hexagon formed by the (−1)-curves of S. The

group T∼= (C∗)2 is the lift in Aut(S) of the diagonal automorphisms of P2, which fixes P1, P2,

and P3. This subgroup will be denoted by T.

We will use the embedding of S in P2 ×P2 given by xu = yv = zw, where (x : y : z)× (u : v : w)

stands for the coordinates in P2 ×P2. This model is presented in more detail in Blanc (2006).

Explicitly, an element (a,b) ∈ (C∗)2 corresponds to the map (x : y : z)× (u : v : w)→ (x : ay :

bz)× (u : a−1v : b−1w). The maps

r : (x : y : z)× (u : v : w) 7→ (w : u : v)× (z : x : y), and

s : (x : y : z)× (u : v : w) 7→ (x : z : y)× (u : w : v)

generate a subgroup of Aut(S) isomorphic to D6, and the quotient Aut(S)/T ∼= D6 is gen-

erated by the images of r and s. The automorphism r acts on the hexagon formed by the

(−1)-curves as an elementary rotation, and s acts as a reflection of the hexagon which does

not fix any vertex. We have the relations r6 = s2 = (rs)2 = id, giving the classical presentation

of D6.

Lemma 2.4.1. Any element r′ ∈ Aut(S) such that w(r′) = w(r) is equal to r up to conjugation

by an element of T.
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Proof. Let r′ ∈Aut(S) be such that w(r′) =w(r). Since the kernel of w is the normal subgroup

T of Aut(S), we have r′ = tr, for some t ∈ T. Explicitly, there exist (a,b) ∈ (C∗)2 such that

r′ : (x : y : z)× (u : v : w) 7→ (w : au : bv)× (z : a−1x : b−1y). Let t : (x : y : z)× (u : v : w) 7→ (x :

cy : dz)× (u : c−1v : d−1w) ∈ T∼= (C∗)2. We have

tr′t−1 : (x : y : z)× (u : v : w) 7→ (w : acd−1u : bcv)× (z : a−1c−1dx : b−1c−1y).

Setting c = b−1 and d = ab−1, we get tr′t−1 = r.

Let G be a subgroup of Aut(S), such that rk(PicG(S)) = 1. The classification of Sarksov links

in Iskovskikh (1996) and the fact that Bertini and Geiser involutions lead to G-isomorphic

surfaces imply the following.

Remark 2.4.2. There is no link of type I starting from S. Hence, for S not to be G-solid, it has

to be G-birational to a surface S′, not isomorphic to S. The only G-link S 99K S′ such that S′ is

not isomorphic to S is the blow-up of a point P ∈ S that is not in the exceptional locus, followed

by the contraction of three (−1)-curves. We obtain S ∼= P1 ×P1. Hence, any G-birational map

from S to a G-conic bundle S′′ → P1 must split in the following way:

S P1 ×P1 S′′.

We will often refer to the results of section 2.3 to determine whether or not the surface S is

G-solid.

In particular, Remark 2.4.2 implies the following lemma:

Lemma 2.4.3. Let G be a subgroup of Aut(S) such that rk(PicG(S)) = 1, not isomorphic to a

subgroup of D6. Then S is G-solid.

Proof. Assume that S is not G-solid. Then, by Remark 2.4.2, there exists a subgroup G′ of

Aut(S) birationally conjugated to G, which fixes a point P in general position. But in this case,

G′∩T= id, so G′ is isomorphically mapped by w to a subgroup of D6.

Lemma 2.4.4. If S is a G-del Pezzo surface, then the image of G by w in D6 must contain the

subgroup of D6 isomorphic to Z6, or the subgroup isomorphic to S3 that acts transitively on

the (−1)-curves of S.

Proof. Assume that G does not act transitively on the (−1)-curves of S. Checking all possible

subgroups of D6, we find that one of the divisors E1+E2+E3, or D12+D23+D13, or Ei+E jk,

with j,k ̸= i, is invariant by G. In all those cases, according to Castelnuovo’s contractibility

criterion, there exists a G-birational morphism either to P2 or to P1 ×P1.

Corollary 2.4.5. Let G be a subgroup of Aut(S) such that rk(PicG(S)) = 1. Then G is not

isomorphic to any of the groups Z2
2,Z3,Z2,{id}.

The only remaining groups of interest are D6, Z6, and S3. Let us start with the case of S3.
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Proposition 2.4.6. Let G be a subgroup of Aut(S) isomorphic to S3 and such that rk(PicG(S))=

1. Then, up to conjugation in Aut(S), the group G is generated by (x : y : z)× (u : v : w) 7→ (y :

z : x)× (v : w : u) and (x : y : z)× (u : v : w) 7→ (w : v : u)× (z : y : x). Moreover, the surface S

is not G-solid.

Proof. If the restriction of w to G is not injective, then the image of G by w is isomorphic to

Z3, isomorphic to Z2, or trivial. By Lemma 2.4.4, it implies that rk(PicG(S)) = 1, contradicting

our assumption. Hence w(G) is isomorphic to S3 and acts transitively on the (−1)-curves, by

Lemma 2.4.4. We deduce that the group G is generated by an element g such that w(g) =

w(r2), and an element h such that w(h)=w(rs). Geometrically, rs acts on the hexagon formed

by the (−1)-curves as a reflection that fixes two opposite vertices. By Lemma 2.4.1, we have

g : (x : y : z)× (u : v : w) 7→ (y : z : x)× (v : w : u) up to conjugation by an element of the torus.

Since ker(w) = T, h = trs for some t ∈ T. Explicitly, h is of the form (x : y : z)× (u : v : w) 7→
(w : av : bu)× (z : a−1y : b−1x), for some (a,b) ∈ (C∗)2. We get h2 : (x : y : z)× (u : v : w) 7→
(b−1x : y : bz)×(bu : v : b−1w), and knowing that Ord(h) = 2, we deduce that b = 1. Moreover,

hgh : (x : y : z)× (u : v : w) 7→ (a−1y : az : x)× (av : a−1w : u), but the relations in D6 imply that

hgh = g−1 : (x : y : z)× (u : v : w) 7→ (y : z : x)× (v : w : u). Hence, a = 1, so that h : (x : y :

z)×(u : v : w) 7→ (w : v : u)×(z : y : x). The three points of the form (1 : µ2k : µk)×(1 : µk : µ2k)

are in general position and fixed by the action of G. Blowing up one of them, we get a G-link

to the surface P1×P1 with two fixed points on it in general position. Hence, we are in the case

of Example 2.3.1, so that S is G-birational to the G-conic bundle F1.

Proposition 2.4.7. If G is a subgroup of Aut(S) isomorphic to D6 such that rk(PicG(S)) = 1,

then, up to conjugation in Aut(S), the group G is generated by (x : y : z)× (u : v : w) 7→ (w :

u : v)× (z : x : y) and (x : y : z)× (u : v : w) 7→ (x : z : y)× (u : w : v). Moreover, the surface S is

not G-solid.

Proof. Assume that G ∼= D6. Going through the possible quotients of D6 and combining with

Lemma 2.4.4, we see that either w(G) = D6, or w(G) =S3. We will exclude the latter case,

in which G∩ker(w) = T ∼= Z2. Since the only extension of the form

1 Z2 G S3 1

splits, and since Z2 acts trivially on the Picard group of S, we deduce that the group G has

a subgroup H isomorphic to S3 such that PicH(S) = 1. But such a group is explicitly given

in Lemma 2.4.6, and we see that it cannot commute with a subgroup of T isomorphic to Z2.

Hence we get G ∼= w(G) = D6, and the group G is generated by an element g such that

w(g) = w(r), and an element h such that w(h) = w(s). By Lemma 2.4.1, the automorphism g

is conjugated to r by an element of T, and its unique fixed point is P = (1 : 1 : 1)× (1 : 1 : 1).

The isomorphism h is of the form (x : y : z)×(u : v : w) 7→ (x : az : bz)×(u : a−1w : b−1v). Since

Ord(h) = 2, we get b = a−1. Moreover, hr2h : (x : y : z)× (u : v : w) 7→ (az : x : a−2y)× (a−1w :
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u : a2v). But the structure of D6 implies that hr2h = r−2 : (x : y : z)× (u : v : w) 7→ (z : x :

y)× (w : u : v), so that a = 1. Hence, h = s : (x : y : z)× (u : v : w) 7→ (x : z : y)× (u : w : v).

This automorphism also fixes P, so that, as described in Remark 2.4.2, there exists a G-link

from S to P1 ×P1 centered at P. By Theorem 2.3.21, the surface P1 ×P1 is not G′-solid for

any subgroup G′ ⊂ Aut(P1 ×P1) isomorphic to D6. We conclude that S is not G-solid.

Proposition 2.4.8. Let G be a subgroup of Aut(S) isomorphic to Z6 and such that rk(PicG(S))=

1. Then, up to conjugation in Aut(S), the group G is generated by (x : y : z)× (u : v : w) 7→ (w :

u : v)× (z : x : y). Moreover,the surface S is not G-solid.

Proof. First, notice that the restriction of w to G is injective. Indeed, if not, then the image

of G by w is isomorphic to Z3, isomorphic to Z2, or trivial. By Lemma 2.4.4, it implies that

rk(PicG(S))> 1, contradicting our assumption. The group G is then generated by an element

g such that w(g) = w(r). By Lemma 2.4.1, the automorphism g is conjugated to r : (x : y :

z)× (u : v : w) 7→ (w : u : v)× (z : x : y) by an element of T. The only fixed point of r in S

is (1 : 1 : 1)× (1 : 1 : 1). In particular, there is a subgroup G′ of Aut(S) containing G and

isomorphic to D6. Since S is not G′-solid by Proposition 2.4.7, the surface S is not G-solid

either.

Summing up the results of this section, we get the following.

Theorem 2.4.9. Let G be a subgroup of Aut(S) such that rk(PicG(S)) = 1. Then S is G-solid

if and only if G is not isomorphic to Z6, S3, or D6.

2.5 The projective plane

The only remaining smooth del Pezzo surface is S = P2, whose automorphism group is

PGL3(C). The G-rigidity of S has been studied by D.Sakovics in Sakovics (2019). We will point

out how his results hold for the G-solidity of S, and describe the full G-birational geometry of S

for G ⊂ PGL3(C) isomorphic to A4 or S4. In other words, we are going to list all G-Mori fibre

spaces S′ such that there exists a G-birational map S 99K S′.

Theorem 2.5.1 (Sakovics (2019)). The projective plane is G-rigid if and only if G is transitive

and not isomorphic to S4 or A4.

Moreover, if G fixes a point on S, then we can G-equivariantly blow-up this point and get a

G-birational map to the G-conic bundle F1, so that S is not G-solid. Hence, the only remaining

cases to study are those of S4 and A4.

Lemma 2.5.2. The subgroups of PGL3(C) isomorphic to S4 or A4 are unique up to conjuga-

tion in PGL3(C).
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Proof. The canonical projection π : GL3(C) → PGL3(C) induces a surjection SL3(C) →
PGL3(C). Let G ⊂ PGL3(C) be a subgroup of PGL3(C) isomorphic to S4, and consider its lift

G′ ⊂ SL3(C) by the above projection. The kernel of π restricted to SL3(C) is {I3,µI3,µ
2I3},

where µ is a primitive cube root of the unity. Thus, we have an extension

1 Z3 G′ G 1.

But {I3,µI3,µ
2I3} lies in the center of GL3(C). We deduce that G′ is isomorphic to Z3 ×S4,

since this group is the only triple central extension of S4. Its subgroup {id}×S4 is sent

isomorphically to G by π . In particular, there exists a subgroup of GL3(C) isomorphic to S4,

whose projection in PGL3(C) is G. But the only irreducible faithful linear representations of

degree 3 of S4, up to equivalence of representations, are the standard one and its product

with the sign representation. Both are mapped by π to the same subgroup of PGL3(C).

The group A4 has two triple central extensions, namely Z3×A4, and a non-split extension. But

in the second case, there is no irreducible faithful representation of degree 3 whose image is in

SL3(C). Hence, as in the case of S4, there is a subgroup of GL3(C) mapped isomorphically

by π onto G. Since there is only one equivalence class of irreducible linear representations of

A4 of degree 3, we conclude that A4 is unique in PGL3(C), up to conjugation.

Proposition 2.5.3. Let G ∼=S4 be a subgroup of Aut(S). The only G-links starting from S are:

• A link of type I of the form

Z5

σ

��
π

��
S P1

where π : Z5 → P1 is a G-conic bundle on a del Pezzo surface of degree 5.

• A link of type II of the form

Z6
σ

��

τ

��
S τ // S

where Z6 is a del Pezzo surface of degree 6, and τ is the standard Cremona involution.

Moreover, the only G-link starting from Z5 is the inverse of (2.5.3), leading back to S.
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Proof. Let G be the subgroup of PGL3(C) generated by A=

−1 0 0

0 1 0

0 0 1

, B=

0 0 1

1 0 0

0 1 0

,

and C =

1 0 0

0 0 1

0 1 0

. This group is isomorphic to S4. Recall that two isomorphic subgroups

of S4 are always conjugated in S4, so that it is enough to find an occurrence of each subgroup

up to isomorphism in the study of the possible stabilizers.

• There is no fixed point under the above action.

• Notice that the subgroup of G generated by A and B is isomorphic to A4. It is the only

subgroup of G of index two and has no fixed point, so that G does not have any orbit of

length 2.

• The only subgroup of index three up to conjugation is D4, generated by

−1 0 0

0 0 −1

0 1 0

,

and

1 0 0

0 0 1

0 1 0

. Its fixed points are O3 = {(1 : 0 : 0),(0 : 1 : 0),(0 : 0 : 1)}, and O3 is

the only orbit of length 3 under the action of G. It is the centre of the link of type II:

Z6
σ

��

τ

��
S τ // S

where Z6 is a del Pezzo surface of degree 6, and τ is the standard Cremona involution.

• The group G does have any orbit of length 4 in general position. Indeed, G has a

unique subgroup of index 4. It is isomorphic to S3, and generated by

0 0 1

1 0 0

0 1 0

 and

1 0 0

0 0 1

0 1 0

. The only point fixed by S3 is (1 : 1 : 1), and its G-orbit is O4 = {(1 : 1 :

1),(−1 : 1 : 1),(1 : −1 : 1),(1 : 1 : −1)}. Hence, there is a G-link of type I of the form:

F1

σ

��
π

��
S P1

(1)

where π : X → P1 is a G-conic bundle on a del Pezzo surface of degree 5, with invariant

Picard rank 2.
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• There is an orbit of length 6, but not in general position. Indeed, there are two sub-

groups of index 6 in G. The first one is Z2
2, generated by A =

−1 0 0

0 1 0

0 0 1

, and

B =

1 0 0

0 −1 0

0 0 1

. Its only fixed point is (0 : 0 : 1), and its orbit is O3, which is of

length 3. The other subgroup of index 6 of G is Z4, generated by

1 0 0

0 0 1

0 −1 0

. Its

fixed points are (0 : −i : 1), (0 : i : 1), and (1 : 0 : 0). The orbit of the last one is O3, and

the two others have the orbit O6 = {(0 : i : 1),(0 : −i : 1),(1 : 0 : i),(1 : 0 : −i),(i : 1 :

0),(−i : 1 : 0). These six points are not in general position, as they all lie on the Fermat

conic x2 + y2 + z2 = 0.

• There is no orbit of length 8 in general position. The only subgroup of index 8 is Z3,

generated by

0 0 1

1 0 0

0 1 0

. Its fixed points are (1 : 1 : 1), (1 : ω3 : ω2
3 ), and (1 : ω2

3 : ω3),

where ω3 is a primitive cube root of the unity. The orbit of (1 : 1 : 1) is of length 4, and

(1 : ω3 : ω2
3 ), and (1 : ω2

3 : ω3) lie on the same orbit of length 8: O8 = {(1 : ω3 : ω2
3 ),(1 :

ω3 : ω2
3 ),(1 : ω3 : ω2

3 ),(1 : ω3 : ω2
3 ),(1 : ω2

3 : ω3),(1 : ω2
3 : ω3),(1 : ω2

3 : ω3),(1 : ω2
3 : ω3)}.

But these eight points are on the conic x2 = yz.

It remains to show that there is no G-link starting from X , except the inverse of the link (1).

For this, we will show that all the orbits under the action of G lifted on F1 have several points

on the same fibre of the conic bundle. The birational map γ is given by the linear system |C|
of conics passing through all the points of the orbit O4. The curves x2−y2 = 0 and x2− z2 = 0

form a basis of this linear system. Hence, up to a change of basis, the map γ is of the form

(x : y : z) 7→ (x2 − y2 : x2 − z2). The image of G by γ is isomorphic to S3. Hence the kernel N

of the induced morphism G → Aut(P1) is isomorphic to Z2
2, and generated by the matrices

A =

−1 0 0

0 1 0

0 0 1

, and B =

1 0 0

0 −1 0

0 0 1

. The action of N on the smooth conics of this

system is faithful, hence N does not fix any point on the regular fibres of the conic bundle.

We get the following immediate consequences.

Corollary 2.5.4. Let G be a subgroup of Aut(S) isomorphic to S4. The projective plane is not

G-solid, but is not G-birational to any Hirzebruch surface.

Corollary 2.5.5. Let G be a subgroup of Aut(S) isomorphic to S4. Then BirG(S) = ⟨G,τ⟩ ∼=
S4 ×Z2, where τ is the standard Cremona involution.
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Proof. The elements of G are the automorphisms of the form (x : y : z) 7→ σ(αx : βy : γz),

where σ is a permutation of the coordinates, and α,β ,γ ∈ {−1,1}. The involution τ : (x : y :

z) 99K (yz : xz : xy) commutes with all these elements.

The remaining case to study is that of G ∼= A4.

Proposition 2.5.6. Let G ∼=A4 be a subgroup of Aut(S). The only G-links starting from S are:

• Three links of type I of the form

Z5

σ

��
π

��
S P1

(2)

where π : X → P1 is a G-conic bundle on a del Pezzo surface of degree 5.

• A link of type II of the form

Z6
σ

��

τ

��
S τ // S

where Z6 is a del Pezzo surface of degree 6, and τ is the standard Cremona involution.

• A one parameter family of links of type II of the form

Z
σ

��

τ

��
S

ia // S

where σ is the blow-up of an orbit of six points, τ is the G-equivariant contraction of

eight (−1)-curves, and ia is a birational involution.

The only G-link starting from X is the inverse of (2), leading back to S.

Proof. Up to conjugation in PGL3(C), the group G is generated by the matrices a=

0 0 1

1 0 0

0 1 0

,

and b =

−1 0 0

0 1 0

0 0 1

. Recall that any two isomorphic subgroups of A4 are conjugated to

each other in A4.

• There is no fixed point under the above action.

• There is no subgroup of index 2 in G.
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• The only subgroup of index 3 is N = Z2
2, generated by A =

−1 0 0

0 1 0

0 0 1

, and B =

1 0 0

0 −1 0

0 0 1

. Its only fixed point is (0 : 0 : 1), whose orbit is O3 = {(1 : 0 : 0),(0 : 1 :

0),(0 : 0 : 1)}. The only link centred at this orbit is- the link of type II of the form

Z
σ

��

τ

��
S τ // S

where τ is the standard Cremona involution.

• The only subgroup of G of index 4 is Z3, generated by

0 0 1

1 0 0

0 1 0

, and have three

independant fixed points: (1 : 1 : 1), (1 : ω3 : ω2
3 ), and (1 : ω2

3 : ω3). They give rise to

three distinct orbits of length 4 in general position: O4 = {(1 : 1 : 1),(−1 : 1 : 1),(1 : −1 :

1),(1 : 1 : −1)}, O′
4 = {(1 : ω3 : ω2

3 ),(−1 : ω3 : ω2
3 ),(1 : −ω3 : ω2

3 ),(1 : ω3 : −ω2
3 )}, and

O′′
4 = {(1 : ω2

3 : ω3),(−1 : ω2
3 : ω3),(1 : −ω2

3 : ω3),(−1 : −ω2
3 : ω3)}. In each case, the

points are in general position, and blowing-up one of them, we get a G-link of type I of

the form

Z5

σ

�� ��
S P1

(3)

where Z5 is a del Pezzo surface of degree 5.

• The unique subgroup of index 6 of G is isomorphic to Z2, generated by

−1 0 0

0 1 0

0 0 1

.

Its fixed points are the points of O3, and those of the form (0 : 1 : a), with a ̸= 0. They

form orbits of length 6 of the form Oa
6 = {(0 : 1 : a),(a : 0 : 1),(1 : a : 0),(0 : −1 : a),(a :

0 : −1),(−1 : a : 0)}. The only Sarkisov link centred at such orbit is the link of type II of

the form

Z
σ

��

τ

��
S

ia // S
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where σ is the blow-up of Oa
6, τ is the G-equivariant contraction of eight (−1)-curves,

and ia is the birational involution (x : y : z) 7→ ( f1(x,y,z) : f2(x,y,z) : f3(x,y,z)), where

f1(x,y,z) =
(
a12 +1

)
x2y2z+a10 (−y4)z+2a8y2z3 −a6z5 +2a4x2z3 −a2x4z,

f2(x,y,z) =
(
a12 +1

)
x2yz2 −a10x4y+2a8x2y3 −a6y5 +2a4y3z2 −a2yz4, and

f3(x,y,z) =
(
a12 +1

)
xy2z2 +a10(−x)z4 +2a8x3z2 −a6x5 +2a4x3y2 −a2xy4.

We will now show that there is no G-link starting from any of the G-conic bundles X1, X2, and

X3 of degree 5, except the inverse of the link (3). The G-conic bundle X1 is the same as X in

the proof of Proposition 2.5.3, and the proof is the same. The G-conic bundle X2 is the blow-

up of S in the points of O′
4 = {(1 : ω3 : ω2

3 ),(−1 : ω3 : ω2
3 ),(1 : −ω3 : ω2

3 ),(1 : ω3 : −ω2
3 )}.

The linear system of conics passing through these points is generated by µx2 − z2 = 0 and

(µ + 1)x2 + y2 = 0. The G-conic bundle X3 is the blow-up of S in the points of O′
4 = {(1 :

ω2
3 : ω3),(−1 : ω2

3 : ω3),(1 : −ω2
3 : ω3),(1 : ω2

3 : −ω3)}. The linear system of conics passing

through these points is generated by µx2 − y2 = 0 and (µ + 1)x2 + z2 = 0. In both of these

cases, and the subgroup N ∼= Z2
2 of G acts faithfully on each smooth conic of the system,

hence does not fix any point in the fibres of the conic bundle.

Once again, we get the following consequences.

Corollary 2.5.7. Let G be a subgroup of Aut(S) isomorphic to A4. The projective plane is not

G-solid, but not G-birational to any Hirzebruch surface.

Corollary 2.5.8. Let G be a subgroup of Aut(S) isomorphic to A4. Then BirG(S)= ⟨G,τ, ia|a ∈ C∗⟩,
where τ is the standard Cremona involution.

Summing up the results of this section, we can conclude about the G-solidity of the projective

plane.

Theorem 2.5.9. Let G be a finite subgroup of PGL3(C). The following assertions are equival-

ent.

• The projective plane is G-rigid,

• The projective plane is G-solid,

• The group G is transitive and not isomorphic to S4 or A4.



Chapter 3

Linearization problem for finite

subgroups of the plane Cremona

group

"A speaker stops getting nervous only when they start giving bad talks."

Lucy Moser-Jauslin

We give a complete solution to the linearization problem in the plane Cremona group over the

field of complex numbers. The results presented in this chapter have been obtained in collab-

oration with Egor Yasinsky and Arman Sarikyan, see Pinardin et al. (2024). All authors have

approved the inclusion of this work in the present thesis and acknowledge equal contribution.

3.1 Projective linearizability and linearizability, an update.

This section updates Pinardin et al. (2024). In accordance with the Academic Quality and

Standards of the University of Edinburgh1, we use this introductory part for it and leave the

body of the paper unchanged. To avoid overloading terminology and to remain aligned with our

main focus, namely the conjugacy in the Cremona group, we chose to define as linearizable

a subgroup of Crn(C) that is conjugate to a subgroup of Aut(Pn), or, equivalently, a group

acting faithfully on a variety which is equivariantly rational. In fact, many authors define the

linearizability as something more restrictive. We present this definition here and apply it only

until Corollary 3.1.3.

1. https://registryservices.ed.ac.uk/academic-services/students/thesis-submission
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Definition 3.1.1. A subgroup G of Crn(C) that is conjugate to a subgroup H of Aut(P2)

is called projectively linearizable. If, in addition, the group H admits an isomorphic lift to a

subgroup of GLn+1(C), then G is called linearizable.

While the former notion is the most natural for our purposes, it may nevertheless be reas-

onable to add the condition of isomorphic lift to the linear group, as above. For example, a

linear representation can always be naturally extended to a linear representation of higher

dimension. Thus one might expect the same kind of extendability for linearizable actions. Yet

a projectively linearizable group G faithfully acting on a rational variety X need not induce

a projectively linearizable action of G on the product X × Pn. This becomes true if G is

linearizable in the sense of definition 3.1.1.

The main point of this addendum to Pinardin et al. (2024) is that we recently found out that, on

surfaces, projective linearizability and linearizability coincide for all actions except those that

are trivially linearizable, that is, when G is a subgroup of Aut(P2) without an isomorphic lift to

GL3(C). The following two statements are corollaries of Theorem 3.2.1 and its proof.

Corollary 3.1.2. Let G ⊂ Cr2(C) be a finite subgroup. Consider a regularization of G on a

smooth rational G-minimal surface S. Then G is linearizable if and only if there exists a G-

birational map ϕ : S 99K P2 such that ϕGϕ−1 fixes a point on P2.

Proof. It follows from the proof of Theorem 3.2.1, via a case-by-case study of the subgroups

of Aut(P2) that are obtained by birational conjugation of projectively linearizable subgroups of

Cr2(C).

Corollary 3.1.3. Let G ⊂ Cr2(C) be a finite subgroup. Consider a regularization of G on a

smooth rational G-minimal surface S. Assume moreover that S ̸= P2. Then G is linearizable if

and only if it is projectively linearizable.

Proof. Assume that G is linearizable. Then, according to 3.1.2, there exists a G-birational map

ϕ : S 99K P2 such that G′ = ϕGϕ−1 fixes a point P on P2. Hence, the group G acts faithfully

on C2, the tangent space of P2 at P.

We now conclude this remark and revert to Definition 1.5.1 for the notion of linearizability. Let

us present the results of Pinardin et al. (2024).
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3.2 Classification of linearizable actions

In this paper, we use the extremely powerful Sarkisov program, which was introduced in Sub-

section 1.6.1. It has enabled us to prove that the “majority” of subgroups of the plane Cremona

group are non-linearizable, while the linearizable ones belong to the following compact list.

Main Theorem 3.2.1. Let G ⊂ Cr2(C) be a finite subgroup. Consider a regularization of G on

a G-minimal two-dimensional G-Mori fibre space S over the base B. Then G is linearizable if

and only if the pair (S,G) is one of the following2:

K2
S Surface S Group G ⊂ Aut(S) Reference

G-conic bundles (over B ≃ P1)

K2
S = 8 A Hirzebruch surface Fn with n odd — any Theorem 3.6.1

K2
S = 8 A Hirzebruch surface Fn with n > 0 even

— acts cyclically on B

— acts as D2m+1 on B
Theorem 3.6.1

K2
S = 8 The quadric surface F0 ≃ P1 ×P1

— Zn ×Q Zm

— Zn ×Q D2m+1

— D2n+1 ×Q D2m+1

is dihedral

Theorem 3.6.12

G-del Pezzo surfaces (over B = pt)

K2
S = 5 The unique quintic del Pezzo surface

— Z5

— D5
Proposition 3.4.3

K2
S = 6 The unique sextic del Pezzo surface

— Z6

— S3
Proposition 3.4.14

K2
S = 8 The quadric surface P1 ×P1 — (Zn ×Q Zn)•Z2 Proposition 3.6.7

K2
S = 9 The projective plane P2 — Blichfeldt’s list Section 1.7.2

This paper is organized as follows. It employs a significant amount of (elementary) finite group

theory, so relevant facts are isolated in Section 1.7. In Section 3.4, we derive part of the main

theorem related to G-del Pezzo surfaces. Although Section 3.5 is not used later on, it aims to

fill a gap in the literature by explicitly describing, in matrix terms, finite groups acting on smooth

two-dimensional quadrics (equivalently, finite subgroups of the projective orthogonal group

PO(4)). In Section 3.6, we examine the linearizability of finite groups acting on Hirzebruch

surfaces, which finishes the proof of our main result. Finally, in the Appendix we provide the

supporting Magma code for Section 3.5 (note that this code is for the reader’s convenience

only and essentially is not used in any proof).

2. We refer to Notations 1.7.1 for the group-theoretic notations.
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3.3 G-minimal surfaces

So far we have reduced the problem of classification of finite subgroups in Cr2(C) to clas-

sification of G-Mori fibre spaces up to G-birational equivalence. Note that G-conic bundles

π : S → B do not have to be G-minimal in the absolute sense, i.e. it is not necessarily true

that every G-birational morphism S → T is G-isomorphism (a trivial example is the blow-up

F1 → P2 of a G-fixed point on P2). However, we have a precise description of all such cases.

All results below are essentially due to V. Iskovskikh.

Theorem 3.3.1 ((Iskovskih, 1979, Theorems 4 and 5)). Let π : S → P1 be a G-conic bundle.

1. If S is not G-minimal, then S is a del Pezzo surface (in particular, K2
S ⩾ 1).

2. Assume that 1 ⩽ K2
S ⩽ 8. Then S is G-minimal if and only if K2

S ∈ {1,2,4,8}.

3. If K2
S ∈ {1,2,4} then S is a del Pezzo surface if and only if there are exactly two G-conic

bundle structures on S.

Lemma 3.3.2 (see (Iskovskih, 1979, Theorem 5)). Let S be a rational G-surface with K2
S = 7.

Then S is not a G-Mori fibre space. In other words, S is neither a G-del Pezzo surface, nor a

G-conic bundle.

For a G-conic bundle π : S → P1, Noether’s formula implies that K2
S = 8− c, where c is the

number of singular fibres of π . In particular, K2
S ⩽ 8. Besides, Theorem 1.6.2 says that the

G-conic bundles with c ⩾ 8 are G-birationally superrigid and hence are not G-birational to P2.

For our purposes, we may assume that S is also G-minimal (in the absolute sense), hence

K2
S ∈ {1,2,4,8} by Theorem 3.3.1.

Proposition 3.3.3. Let π : S → P1 be a G-conic bundle. If K2
S ∈ {1,2,4}, then G is not

linearizable.

Proof. Indeed, S is G-minimal by Theorem 3.3.1. In particular, it does not admit Sarkisov links

of type III, i.e. contractions to G-del Pezzo surfaces. Hence, all Sarkisov G-links starting from

S are of type II (elementary transformations) or IV and do not change K2
S . Therefore, G is not

linearizable.

Summary. So, it remains to investigate the linearizability in the following two cases:

— S is a G-del Pezzo surface, where we can assume that K2
S ⩾ 4 by Theorem 1.6.1. If

K2
S = 8, we can assume that S is not the blow-up of P2 at a G-fixed point, because such

S is not G-minimal; for the same reason, we skip the case K2
S = 7, see Lemma 3.3.2.

— S is a G-conic bundle π : S → P1 with no singular fibres, i.e. S is a Hirzebruch surface

Fn acted on by a finite group G.
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3.4 G-del Pezzo surfaces

3.4.1 Degree 4

By Theorem 1.6.1, none of the groups G that act biregularly on a del Pezzo surface S with

Pic(S)G ≃ Z and K2
S ⩽ 3 is linearizable. Let S be a G-del Pezzo surface of degree 4 and

ϕ : S 99K S′ be a G-birational map to another G-del Pezzo surface S′. Then it follows from

the classification of Sarkisov G-links that ϕ , if not an isomorphism, fits into the commutative

diagram of G-maps

T

��
π

��

χ1 // T1
χ2 //

��

T2

��

χ3 // · · · · · ·
χn // T ′

π ′

����
S P1 P1 P1 P1 S′

(1)

where π is the blow-up of a G-fixed point on S, which leads to a cubic surface T equipped

with a structure of a G-conic bundle (so π is a link of type I); the maps χi are elementary

transformations of G-conic bundles (links of type II), and π ′ is the blow-down of a G-orbit of

(−1)-curves, where S′ is again a G-del Pezzo surface of degree 4. We conclude that none of

such groups G is linearizable.

3.4.2 Degree 5

Let S be a G-del Pezzo surface of degree 5. Recall that there is a single isomorphism class of

del Pezzo surfaces of degree 5 over C=C. Every Sarkisov G-link starting from S is of type II,

where η blows up a G-orbit of length d, and one of the following holds:

1. S ≃ S′, d = 4, χ is a birational Bertini involution;

2. S ≃ S′, d = 3, χ is a birational Geiser involution;

3. S′ ≃ P1 ×P1, d = 2;

4. S′ ≃ P2, d = 1.

The following proposition lists all possible groups G.

Proposition 3.4.1 ((Dolgachev & Iskovskikh, 2009, Theorem 6.4)). Let S be a del Pezzo

surface of degree 5 and G ⊂ Aut(S) be a group such that Pic(S)G ≃ Z. Then G is isomorphic

to one of the following five groups:

S5, A5, F5, D5, Z5,

where F5 = ⟨a,b | a5 = b4 = 1,bab−1 = a3⟩ is the Frobenius group3 of order 20.

Proposition 3.4.2 ((Cheltsov, 2008, Example 6.3), (Cheltsov, 2014, Theorem B.10)). The del

Pezzo surface of degree 5 is A5- and S5-birationally superrigid.

3. GAP ID [20,3]
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Proof. None of these two groups has faithful 2-dimensional representations over C, hence

none of them has an orbit of size 1 or 2 on our surface: recall, see (Bialynicki-Birula, 1973,

Lemma 2.4), that if X is an irreducible algebraic variety and G ⊂ Aut(X) is a finite group fixing

a point p ∈ X then the induced linear representation G ↪→ GL(TpX) is faithful. Furthermore,

these groups have no subgroups of index 3 or 4, hence there are no equivariant birational

Bertini or Geiser involutions on (with respect to these groups). The result follows.

Proposition 3.4.3. Let S be a G-del Pezzo surface of degree 5. Then G is linearizable if and

only if G ≃ Z5 or G ≃ D5.

Proof. Proposition 3.4.2 implies that the groups A5 and S5 are not linearizable; in fact, S5

is not a subgroup of PGL3(C). The Frobenius group F5 is not a subgroup of PGL3(C) either:

according to the description given in Section 1.7.2, it is obviously not transitive, and moreover

has no faithful 2-dimensional representations (in fact, by (Wolter, 2018, Theorem 1.1), there

exists a unique F5-del Pezzo surface which is F5-birational to S, namely P1 ×P1).

We now show that the groups Z5 and D5 are linearizable. Let G be any of these groups. It is

enough to construct an explicit G-equivariant map P2 99K S, where S is a G-del Pezzo surface

of degree 5, because there is a single G-isomorphism class of such surfaces. Indeed, there is

a single conjugacy class in Aut(S)≃S5 of Z5 and D5, so any isomorphism S ∼−→ S′ to the del

Pezzo surface S′ of degree 5 can be made a G-isomorphism, after composing with a suitable

automorphism of S′. Now, to construct an explicit G-birational map P2 99K S, one can take two

linear automorphisms

r : [x : y : z] 7→ [x : ω5y : ω
−1
5 z], s : [x : y : z] 7→ [x : z : y],

and let G1 = ⟨r⟩ ≃ Z5, G2 = ⟨r,s⟩ ≃ D5. The G1- and G2-orbit of the point [1 : 1 : 1] is a set

of 5 points in general position on P2, lying on the unique smooth conic Q ⊂ P2. By blowing

up these points and contracting the strict transform of Q we get a G1-birational (respectively,

G2-birational) map from P2 to S.

Remark 3.4.4. The actions of A5 and S5 are stably linearizable. More precisely, by (Y. G. Prok-

horov, 2010, Proposition 4.7), Prokhorov shows that S × P1 is S5-birational to the Segre

cubic threefold ∑
5
i=0 xi = ∑

5
i=0 x3

i = 0, which is obviously acted on by S6. Recall that, up to

conjugation, the group S6 has two subgroups isomorphic to S5, given by the standard and the

non-standard embeddings (which differ by an outer automorphism of S6). In the construction

above, S×P1 turns out to be S5-birational to the Segre cubic with a non-standard action of

S5, which is linearizable. Recently, B. Hassett and Yu. Tschinkel gave another proof of this

fact using the equivariant torsor formalism, see (Hassett & Tschinkel, 2023, §8.2).
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3.4.3 Degree 6

Let S be a del Pezzo surface of degree K2
S = 6. Then S is the blow-up π : S → P2 in three

non-collinear points p1, p2, p3, which we may assume to be [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1],

respectively. The surface S can be given as

{
([x0 : x1 : x2], [y0 : y1 : y2]) ∈ P2 ×P2 : x0y0 = x1y1 = x2y2

}
. (2)

The set of (−1)-curves on S consists of six curves: the exceptional divisors of blow-up ei =

π−1(pi) and the strict transforms of the lines di j passing through pi, p j. In the anticanonical

embedding S ↪→ P6 these (−1)-curves form a hexagon Σ; the configuration of lines is shown

in the diagram (3) below.

y0 = y2 = 0

x1 = x2 = 0

y0 = y1 = 0

x0 = x2 = 0

y1 = y2 = 0

x0 = x1 = 0

(3)

Note that Σ is naturally acted on by Aut(S), so there is a homomorphism

Φ : Aut(S)→ Aut(Σ)≃ D6 = ⟨r,s | r6 = s2 = id, srs−1 = r−1⟩,

where r is a rotation by π/3 and s is a reflection. The kernel of Φ is the maximal torus T ⊂
PGL3(C), isomorphic to (C∗)3/C∗ ≃ (C∗)2, and acts on S by

(λ0,λ1,λ2) · ([x0 : x1 : x2], [y0 : y1 : y2]) = ([λ0x0 : λ1x1 : λ2x2], [λ
−1
0 y0 : λ

−1
1 y1 : λ

−1
2 y2]). (4)

The action of T on S \Σ is faithful and transitive, and the automorphism group of Aut(S) fits

into the short exact sequence

1 T Aut(S) D6 1Φ

with Φ(Aut(S)) ≃ D6 ≃ S3 ×Z2, where Z2 is the lift of the standard quadratic involution,

acting by

ι : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([y0 : y1 : y2], [x0 : x1 : x2]), (5)
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and S3 acts naturally by permutations on each of the two triples x0,x1,x2 and y0,y1,y2. In

what follows, we will denote

θ : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([x1 : x2 : x0], [y1 : y2 : y0]) (6)

the generator of Z3 ⊂S3. Then D6 is generated by the element ζ = θ ◦ ι of order 6 (rotation)

and the element σ of order 2 (reflection), whose actions are given by

ζ : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([y1 : y2 : y0], [x1 : x2 : x0]), (7)

σ : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([y0 : y2 : y1], [x0 : x2 : x1]). (8)

Every Sarkisov link χ : S 99K S′ is of type II and starts with blowing up a G-orbit of length d.

Then one of the following holds:

1. S ≃ S′, d = 5, χ is a birational Bertini involution;

2. S ≃ S′, d = 4, χ is a birational Geiser involution;

3. d = 3, K2
S′ = 6;

4. d = 2, K2
S′ = 6;

5. d = 1, S′ ≃ P1 ×P1.

Remark 3.4.5. In cases (3) and (4), the surfaces S′ does not have to be G-isomorphic to S,

see (Yasinsky, 2023, Example 3.9).

Lemma 3.4.6 ((Yasinsky, 2023, Lemma 3.7)). Let S be a G-del Pezzo surface of degree 6.

Then G is of the form

T•⟨r⟩ ≃ T•Z6, T•⟨r2,s⟩ ≃ T•S3, or T•⟨r,s⟩ ≃ T•D6,

where T ≃ Zn ×Zm is a subgroup of T.

Remark 3.4.7. The dihedral group D6 = ⟨r,s⟩ contains two groups isomorphic to S3, but only

for one of them the G-invariant Picard number is 1, namely for ⟨r2,s⟩, which we denote Smin
3 .

The group ⟨r2,rs⟩ will be denoted by Snmin
3 . This is the quotient of D6 by its centre Z(D6)≃Z2.

The following lemma shows that we do not lose generality by choosing particular actions of

the groups Z6, S3 and D6.

Lemma 3.4.8. Let S be a G-del Pezzo surface of degree 6, and let G be isomorphic to Z6, S3

or D6. Then G is conjugate in Aut(S) to the groups ⟨ζ ⟩, ⟨ζ 2,σ⟩ and ⟨ζ ,σ⟩, respectively.

Proof. This is the content of (Pinardin, 2024, Propositions 5.6, 5.7, 5.8). We give a short direct

proof here for the largest of these groups G ≃ D6. We may assume that it is generated by two

elements ζ and σ whose images in Aut(Σ) are as in (7). The map ζ is given by

ζ : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([uy1 : vy2 : y0], [u−1x1 : v−1x2 : x0]) (9)
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for some u,v ∈ C∗. The map

β : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([x0 : v−1x1 : uv−1x2], [y0 : vy1,vu−1y2])

then conjugates ζ to ζ . After this conjugation, σ is given by

σ : ([x0 : x1 : x2], [y0 : y1 : y2]) 7→ ([ay0 : by2 : y1], [a−1x0 : b−1x2 : x1])

for some a,b ∈ C∗. The condition σ
2 = id implies b = 1, while the condition σ ◦ ζ ◦σ = ζ−1

implies a = 1.

Lemma 3.4.9. Let S be a G-del Pezzo surface of degree 6. Then G fixes a point on S if and

only if G∩T= {id}.

Proof. Assume that G fixes a point on S, but G∩T ̸= {id}. Since T can be identified with a

subgroup of PGL3(C) which fixes 3 points on P2, an element of T fixing a point on S \Σ is

necessarily trivial. Therefore, a fixed point p ∈ S of G lies on Σ. But this implies rkPic(S)G > 1.

Conversely, suppose that G∩T= {id}. Then G is isomorphic to Z6, S3 or D6 by Lemma 3.4.6.

It remains to apply Lemma 3.4.8 and notice that the groups mentioned there fix the point

([1 : 1 : 1], [1 : 1 : 1]) ∈ S.

Lemma 3.4.10. Let ϕ : S1 99K S2 be a G-birational map of G-del Pezzo surfaces of degree 6.

Then G fixes a point on S1 if and only if G fixes a point on S2.

Proof. It is enough to prove the necessity. Let ϕ : (S1,G, ι1) 99K (S2,G, ι2) be a G-birational

map, and assume that ι1(G) fixes a point on S1. By Lemma 3.4.9, the group ι1(G) does not

intersect the torus Aut◦(S1) and hence is isomorphic to Z6, S3 or D6 by Lemma 3.4.6. But this

implies that ι2(G) does not intersect the torus Aut◦(S2): otherwise ι2(G)/(ι2(G)∩Aut◦(S2)) is

isomorphic to Z2,Z3,Z2
2,S

nmin
3 (see Remark 3.4.7), hence S2 is not a G-del Pezzo surface.

We now discuss (non)linearizability of three particular groups: ⟨ζ ⟩ ≃ Z6, ⟨ζ 2,σ⟩ ≃ S3 and

⟨ζ ,σ⟩ ≃ D6.

Example 3.4.11. The cyclic group G = ⟨ζ ⟩ ≃ Z6 is linearizable. Indeed, the Sarkisov G-

link centred at the G-fixed point ([1 : 1 : 1], [1 : 1 : 1]) ∈ S leads to the G-del Pezzo surface

S′ ≃ P1 ×P1. Since G is cyclic, it fixes a point on S′ (of course, this can be seen directly as in

the next example), hence the stereographic projection from it linearizes the action of G.
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Example 3.4.12. The symmetric group G = ⟨ζ 2,σ⟩ ≃S3 is linearizable as well. Indeed, after

the same G-link at the fixed point ([1 : 1 : 1], [1 : 1 : 1]), we end up with S′ = P1 ×P1 acted

on by G. Recall that Aut(S′) ≃ (PGL2(C)×PGL2(C))⋊Z2. Since Pic(S′)G = 1, the group

G maps non-trivially to the Z2 factor of this semi-direct product, i.e. G = ⟨r,s⟩, where r is

an automorphism of order 3 acting fibrewisely on S′ and s is an involution which does not

preserve the rulings of S′. It will be shown in Proposition 3.6.7 that such a group fixes a point

on S′, and the stereographic projection from this point linearizes the action of G.

Example 3.4.13 (Iskovskikh’s example). Answering the question of V. Popov, V. Iskovskikh

showed in Iskovskikh (2008) that the group G ≃ D6 generated by the automorphisms ζ and

σ is not linearizable. The proof relied on the classical Sarkisov theory. Recently, another

proof was given by in (Hassett et al., [2021] ©2021, Section 7.6) by using the Burnside group

Burn2(G) and later using the combinatorial Burnside groups, see Tschinkel, Yang, and Zhang

(2022). We refer to Section 1.6.3 for more information.

We are ready to summarize the results of this section.

Proposition 3.4.14. Let S be a G-del Pezzo surface of degree 6. Then G is linearizable if and

only if G ≃ Z6 or G ≃S3.

Proof. The sufficiency follows from Example 3.4.11, Example 3.4.12 and Lemma 3.4.8. To

prove the necessity, we use the classification of G-links given above. Assume that G is

linearizable. Since Bertini and Geiser involutions lead to a G-isomorphic surface, there exists

a sequence of G-links S 99K S1 99K . . . 99K Sn = S′, where all Si are G-del Pezzo surfaces of

degree 6 and G fixes a point on S′ — so that we construct a G-link to P1×P1. But then G fixes

a point on S by Lemma 3.4.10. By Lemma 3.4.9, G does not intersect the torus Aut◦(S), and

hence G is mapped isomorphically to a subgroup of D6. Now the result follows from Lemma

3.4.8 and Examples 3.4.11, 3.4.12 and 3.4.13.

Remark 3.4.15 (Cayley groups and stable linearizability ). The (non)linearizability of D6 and

its subgroups was addressed in a different context by N. Lemire, V. Popov and Z. Reichstein

in their seminal article, see Lemire, Popov, and Reichstein (2006). They called a connected

linear algebraic group G over a field K a Cayley group if it admits a Cayley map, i.e. a G-

equivariant birational isomorphism between the group variety G and its Lie algebra Lie(G).

Let

T =

A =

a1 0 0

0 a2 0

0 0 a3

 : detA = 1

 , t=

A =

a1 0 0

0 a2 0

0 0 a3

 : trA = 0


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be a maximal torus of SL3(C) and its Lie algebra. Both are obviously acted on by the group

W =S3 permuting a1, a2 and a3. Furthermore, T admits a natural compactification {x0y0z0 =

x1y1z1} ⊂ ProjC[x0,x1]× ProjC[y0,y1]× ProjC[z0,z1], which is a W -del Pezzo surface of

degree 6. By Example 3.4.12, and as was also shown in (Lemire et al., 2006, 9.1), T and

t are W -birational. By the Corollary of (Lemire et al., 2006, Lemma 3.5), this is equivalent to

showing that SL3(C) is a Cayley group, because W is the Weyl group of SL3(C).

By the same principle, G2 is not Cayley: its Weyl group is W = D6, the maximal torus and its

Lie algebra are W -isomorphic to T and t, respectively. But the latter two are not W -birational,

as showed in Iskovskikh’s Example 3.4.13. Interestingly enough, by (Lemire et al., 2006,

Proposition 9.1) G2×G2
m is a Cayley group: the varieties T ×A2 and t×A2 are D6-birational;

in other words, D6 is stably linearizable. It has recently been shown that one could replace A2

with A1 here, see (Böhning, Graf von Bothmer, & Tschinkel, 2023, Proposition 12).

Remark 3.4.16. According to Proposition 3.4.14, any finite group G with G ∩T ̸= {id} is

not linearizable. In Hassett and Tschinkel (2023), the authors give an example of stably

linearizable S4-action on the sextic del Pezzo surface (here, one has G∩T≃ V4).

3.5 Finite groups acting on smooth quadric surfaces

Let S = P1 ×P1. Denote by σ the involution

S → S

(x,y) 7→ (y,x).

The connected component Aut(S)◦ of the identity is the subgroup of the automorphisms,

which preserve both rulings. This subgroup is isomorphic to PGL2(C)×PGL2(C). Then there

is a short exact sequence

1 PGL2(C)×PGL2(C) Aut(S) ⟨σ⟩ 1,
ψ

(10)

which splits as the semidirect product Aut(S)≃ (PGL2(C)×PGL2(C))⋊ ⟨σ⟩, with ⟨σ⟩ ≃ Z2

acting on PGL2(C)×PGL2(C) by permuting two factors.

Proposition 3.5.1. Let S = P1 ×P1 and G ⊂ Aut(S).

1. If rkPic(S)G ≃ Z, then G fits into the short exact sequence

1 H ×Q H G Z2 1, (11)

where H is a finite subgroup of PGL2(C).
2. If rkPic(S)G ≃ Z2, then G ≃ H1 ×Q H2, where H1, H2 are finite subgroups of PGL2(C).
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Proof. Let us restrict the exact sequence (10) to G. Clearly, ψ(G) = {id} if and only if G

preserves both rulings of S, which is equivalent to Pic(S)G ≃ Z2. If this is the case, then G

is a subgroup of PGL2(C)×PGL2(C) and the claim follows from Goursat’s lemma 1.7.8 and

Proposition 1.7.2.

Suppose that ψ(G) = ⟨σ⟩ and let K = Kerψ|G. Let p1, p2 : PGL2(C)2 → PGL2(C) be the

projections onto the first and second factors, respectively. By Goursat’s lemma, we have K =

H1×Q H2, where Hi = pi(K); in particular, every element of K is of the form (x,y) 7→ (h1x,h2y),

where (x,y) are local coordinates on S, h1 ∈ H1, h2 ∈ H2. The whole group G is the union of

two cosets, K and τK, where τ(x,y) = (Ay,Bx) for some fixed automorphisms A,B ∈ Aut(P1).

Since K is normal in G, then the conjugation by τ sends each automorphism (h1,h2)∈ K onto

(Ah2A−1,Bh1B−1). Therefore, H1 is isomorphic to H2 via the map h1 7→ Bh1B−1. Indeed, it is

clearly an injective homomorphism. To check surjectivity, we use that τ2 = (AB,BA) ∈ K, i.e.

AB ∈ H1. So, for any h2 ∈ H2 we have that Ah2A−1 ∈ H1 and hence (AB)−1Ah2A−1AB =

B−1h2B ∈ H1 is sent to h2.

Notations 3.5.2. In what follows, the matrices Rn,A,B,C,D,E and F are defined as in Sec-

tion 1.7.1, and I stands for the identity matrix. The elements of Aut(S) \Aut(S)◦, i.e. those

that do not preserve the rulings of S and that act as (x,y) 7→ (My,Nx) with M,N ∈ PGL2(C),
will be denoted (M,N,σ). Otherwise, we will write (M,N, id).

Every fibre product G = H1 ×Q H2, where H1,H2 are subgroups of PGL2(C), obviously acts

on S = P1 × P1 and forces Pic(S)G ≃ Z2. In contrast, not every group G fitting the exact

sequence of the form (11) with H ⊂ PGL2(C) actually embeds into Aut(S), as the following

example shows.

Example 3.5.3. The group G ≃ Z5
2 obviously fits the exact sequence (11) with H ≃ V4 and

Q = {id}. However, it cannot be embedded4 in Aut(P1 × P1). Indeed, by Lemma 3.5.5

below, the normalizer of H = ⟨A,B⟩ in PGL2(C) is ⟨A,B⟩⋊ ⟨C,D⟩ ≃ V4 ⋊S3 ≃ S4. Let

g = (M,N,σ) ∈ G be an element such that ψ(g) = σ . Then G is generated by H ×H and g.

Thus, by multiplying g by an element of H ×H, we may assume that g = (T1,T2,σ), where

T1,T2 ∈ ⟨C,D⟩. But g2 = (T1T2,T2T1, id) ∈ H ×H, which forces T1 = T2 ∈ {I,D,CD,DC},

or (T1,T2) ∈ {(C,C2),(C2,C)}. In all these cases, the group G is isomorphic to V4 ≀Z2.

So, our next goal is to fill the existing gap in the literature: we characterize completely those

finite groups which admit a faithful action on S = P1 ×P1.

4. In fact, this group cannot be embedded even into the Cremona group Cr2(C), see Beauville (2007).
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Theorem 3.5.4. Let G⊂Aut(P1×P1) be a finite subgroup. Then G is conjugate to a subgroup

of one of the following groups:

GAP Order Isomorphism class Generators

No id 48n Dn ×S4 (Rn, I, id),(B, I, id),(I,A, id)

(I,B, id),(I,C, id),(I,D, id)

No id 120n Dn ×A5 (Rn, I, id),(B, I, id)

(I,E, id),(I,F, id)

[1440,5848] 1440 S4 ×A5 (A, I, id),(B, I, id),(C, I, id)

(D, I, id),(I,E, id),(I,F, id)

No id 8n2 Dn ≀Z2, n ⩾ 3 (Rn, I, id),(B, I, id)

(I, I,σ)

[1152,157849] 1152 S4 ≀Z2 (A, I, id),(B, I, id),(C, I, id)

(D, I, id),(I, I,σ)

No id 7200 A5 ≀Z2 (E, I, id),(F, I, id)

(I, I,σ)

The proof of this theorem will be given at the end of the Section. We will begin with a complete

description, in terms of matrix generators, of the subgroups of Aut(P1 ×P1) that satisfy the

exact sequence (11) with H isomorphic to A4, S4, or A5.

Lemma 3.5.5. Let us consider V4, A4, S4 and A5 as subgroups of PGL2(C). Then their

normalizers in PGL2(C) are the following:

1. NPGL2(C)(V4)≃S4;

2. NPGL2(C)(A4)≃S4;

3. NPGL2(C)(S4)≃S4;

4. NPGL2(C)(A5)≃ A5.

Proof. Recall that all finite subgroups of PGL2(C) are unique up to conjugation. Since the

group A4 is normal in S4, then its normalizer contains S4. Similarly, S4 contains a normal

copy of V4, hence the normalizer of V4 in PGL2(C) contains S4. Further, the normalizer of

S4 contains S4, while the normalizer of A5 contains A5. Notice that the normalizer of a finite

group in PGL2(C) is an algebraic group, hence we can use their classification provided by

Theorem 1.7.3. In each case, the normalizer is clearly not the whole PGL2(C), and not the

groups of type (3) or (4), as those are metabelian by Remark 1.7.4 and hence cannot contain

a copy of S4 or A5. The claim follows.

Next, we show how to conjugate fibred products H ×Q H to some “standard forms” in Aut(S).

Recall that Aut(A5) ≃S5 and one has Aut(A5)/Inn (A5) ≃ Z2. Any outer automorphism of

A5 is a conjugation by an odd permutation in S5.
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Proposition 3.5.6. Let H be one of the groups A4, S4 or A5.

1. Suppose that H ≃ A4 or H ≃S4. Then every quotient Q = H/K of H defines uniquely

the subgroup K and the fibre product H×Q H, which is conjugate in Aut(S) to the group

H ×Q H = {(h1,h2) ∈ H ×H : h1 = h2}= {(h,hk) : h ∈ H,k ∈ K}. (12)

In particular, any action of H on S is conjugate to the diagonal one.

2. Suppose that H ≃A5 and fix an outer automorphism ξ ∈ Aut(A5)\ Inn (A5). Then any

fibre product H ×Q H is conjugate in Aut(S) to one of the following groups:

(a) {(h1,h2) ∈ A5 ×A5};

(b) {(h,h) : h ∈ A5}, i.e. A5 acts diagonally on S;

(c) {(h,ξ (h)) : h ∈ A5}.

Proof. Let K ⊆ H be a normal subgroup. The classification of normal subgroups of H implies

that the isomorphism type of the quotient Q = H/K determines K uniquely. Vice versa, the

isomorphism type of K determines the quotient Q. Therefore, by Goursat’s Lemma 1.7.8, the

fibred product H ×Q H is uniquely determined by H, Q and an automorphism δ ∈ Aut(Q),

and in this case

H ×Q H = {(h1,h2) ∈ H ×H : δ (h1) = h2}

(1) Let us show that one can always obtain δ = id by conjugating this group in Aut(S). We

may assume that Q ̸= {id}. Then direct computations show that one has H = K⋊Q for some

complement Q to K in H; then we identify the quotient Q with a subgroup of H and can write

H = q1K ⊔ . . .⊔qnK, where Q = {q1, . . . ,qn} ⊂ H. More precisely, one of the following holds:

(i) H = A4, K = {id}, Q = A4 and Aut(Q)≃S4.

(ii) H = A4, K = V4, Q = ⟨(123)⟩ ≃ Z3 and Aut(Q)≃ Z2.

(iii) H =S4, K = {id}, Q =S4 and Aut(Q) = Inn (Q)≃S4.

(iv) H =S4, K = V4, Q = ⟨(123),(12)⟩ ≃S3 and Aut(S3)≃ Inn (S3)≃S3.

(v) H =S4, K = A4, Q = ⟨(12)⟩ ≃ Z2.

In particular we see that any automorphism δ ∈ Aut(Q) is a conjugation g 7→ hgh−1 by an

element h ∈S4 (note that in the case (ii) the only non-trivial automorphism (123) 7→ (123)2 =

(132) is the conjugation by (12)). Since every such h corresponds to an automorphism αh ∈
Aut(P1), the automorphism (h1,h2) 7→ (h1,α

−1
h h2αh) conjugates H ×Q H to the fibre product

with δ = id.

(2) Since A5 is simple, then either Q = {id} or Q =A5. In the first case, we get the group (a).

In the second case, one has H×Q H = {(h,δ (h))∈A5×A5} for δ ∈Aut(A5). If δ ∈ Inn (A5),

the same argument as in (1) shows that one can conjugate H×Q H to the group (b). Otherwise

δ = γ ◦ξ for some γ ∈ Inn (A5). Since γ corresponds to the conjugation by an automorphism

of P1, we can conjugate the whole group to (c).



3.5. Finite groups acting on smooth quadric surfaces 57

Proposition 3.5.7. Assume that H ≃ A4. Then, up to conjugation in Aut(S), there are the

following cases for G, and only them.

GAP Order Isomorphism class Generators

[24,13] 24 A4 ×Z2 (A,A, id),(B,B, id)

(C,C, id),(I, I,σ)

[24,12] 24 S4 (A,A, id),(B,B, id)

(C,C, id),(D,D,σ)

[96,70] 96 Z4
2 ⋊Z6 (A, I, id),(B, I, id)

(C,C, id),(I, I,σ)

[96,227] 96 Z2
2 ⋊S4 (A, I, id),(B, I, id)

(C,C, id),(D,D,σ)

[288,1025] 288 A4 ≀Z2 (A, I, id),(B, I, id)

(C, I, id),(I, I,σ)

Proof. Any subgroup of PGL2(C) isomorphic to A4 is conjugate to the group H generated

by the matrices A,B, and C, see Section 1.7.1. We then apply Proposition 3.5.6. Note that

K = V4 ◁A4 is generated by A and B. Then, because of (12), we have one of the following

possibilities for H ×Q H:

(1) K = {id} ⟨(A,A),(B,B),(C,C)⟩;
(2) K = V4 ⟨(A, I),(B, I),(I,A),(I,B),(C,C)⟩
(3) K = A4 ⟨(A, I),(B, I),(C, I),(I,A),(I,B),(I,C)⟩.

It remains to identify an element g ∈ G such that ψ(g) = σ . It is of the form (M,N,σ) ∈
PGL2(C)2 ⋊Z2, and normalizes H ×Q H. Since (M,N,σ)−1 = (N−1,M−1,σ), then for any

P ∈ H we get that

(N−1,M−1,σ)(P,P, id)(M,N,σ) = (N−1PN,M−1PM, id) (13)

is an element of H ×Q H ⊂ H ×H, which implies that M and N normalize H in PGL2(C).
By Lemma 3.5.5, the normalizer of H in PGL2(C) is the group isomorphic to S4 which

contains H. Consider three cases.

Suppose that H ×Q H is of the form (1) among the three above possibilities. If M ∈ H, then,

up to a multiplication by an element of H ×Q H, we may assume that g = (I,N,σ). Therefore,

(13) implies N−1PN = P for all P ∈ H. But the centre of A4 is trivial, hence N = I. If M /∈ H,

then (13) implies that N−1PN=M−1PM for all P∈H, hence MN−1 ∈CS4(A4) = {id}, and we

conclude that M=N, g= (M,M,σ). Note that M= TD for T∈H and D the matrix introduced

in Section 1.7.1 (whose coset generates S4/A4). Multiplying further g by (T−1,T−1, id), we

achieve g = (D,Dσ).
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Now suppose that H ×Q H is of the form (2). As before, if M ∈ H, then we may assume

M = I. The condition (13) gives that (N−1PN,P) is an element of H ×Q H for any P ∈ H,

hence [N,P] ∈ K for all P ∈ H. This implies N ∈A4, hence N = T, N = TC or N = TC2, where

T ∈ V4. Identifying ⟨(I,A),(I,B)⟩ with V4, we may further multiply g by an element of this

group to get g = (I, I,σ), g = (I,C,σ) or g = (I,C2,σ), respectively. But we can exclude the

last two options, because g = (I,C2,σ) is the same as g = (I,C,σ), up to conjugation by

(D,D, id), which normalizes H ×Q H, while

(C2,C, id)−1(I,C,σ)(C2,C, id) = (C,C, id)2(I, I,σ).

Now, if M /∈ H, then (13) implies that (N−1PN,M−1PM, id) is an element of H ×Q H for all

P ∈ H, which is equivalent to N−1P−1NM−1PM being an element of K for all P ∈ H. But this

holds if and only if [P,MN−1]∈NKN−1 =K for all P∈H. As above, we conclude that MN−1 ∈
A4 and hence g = (M,TM,σ), where T ∈ A4. As above, we can multiply g by an element of

⟨(A, I),(B, I),(I,A),(I,B)⟩ to get g = (M,M,σ), g = (M,CM,σ) or g = (M,C2M,σ). Since

M = DT′ for some T′ ∈ H, then with a further multiplication by (T′−1,T′−1, id) ∈ H ×Q H,

we achieve g ∈ {(D,D,σ),(D,CD,σ),(D,C2D,σ)}. But we can exclude g = (D,CD,σ) and

g = (D,C2D,σ), because the squares of those elements are respectively (C2,C, id) and

(C,C2, id), which are not in H ×Q H = ⟨(A, I),(B, I),(I,A),(I,B),(C,C)⟩.

Finally, assume that H ×Q H is of type (3). Note that g2 = (MN,NM, id) ∈ H ×H, therefore

N = M−1T, where T ∈ A4. Multiplying g by (I,T−1, id), we may assume g = (M,M−1,σ).

Finally, since M = T′ or M = T′D for T′ ∈ A4, multiplication by an element of H ×H gives

g = (I, I,σ) or g = (D,D,σ), respectively. But the latter is conjugate to the former in Aut(S)

via the automorphism (I,D, id).

Remark 3.5.8. Some generators of G, obtained during the proofs of Propositions 3.5.7,

3.5.9, may be redundant. This is taken into account in the Generators column of the cor-

responding tables. For example, as soon as G contains (I, I,σ), the group G also contains

(I, I,σ)(M,N, id)(I, I,σ) = (N,M, id) for each (M,N, id) ∈ G. Similarly, suppose that we are

in case (2) of the above proof, and G ≃ Z2
2 ⋊S4 is generated by (A, I, id), (B, I, id), (I,A, id),

(I,B, id), (C,C, id) and (D,D,σ). The relations in S4 then yield (I,B, id) = (I,DBD, id) =

(D,D,σ)−1(B, I, id)(D,D,σ), and (I,A, id) = [(D,D,σ)−1(A, I, id)(D,D,σ)] · (I,B, id)−1. We

leave other cases to the reader.
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Proposition 3.5.9. Assume that H ≃ S4. Then, up to conjugation in Aut(S), there are the

following cases for G, and only them.

GAP Order Isomorphism class Generators

[48,48] 48 S4 ×Z2 (A,A, id),(B,B, id),(C,C, id)

(D,D, id),(I, I,σ)

[192,955] 192 Z4
2 ⋊D6 (A, I, id),(B, I, id),(C,C, id)

(D,D, id),(I, I,σ)

[576,8654] 576 A2
4 ⋊Z2

2 (A, I, id),(B, I, id),(C, I, id)

(D,D, id),(I, I,σ)

[576,8652] 576 A2
4 ⋊Z4 (A, I, id),(B, I, id),(C, I, id)

(D,D, id),(I,D,σ)

[1152,157849] 1152 S4 ≀Z2 (A, I, id),(B, I, id),(C, I, id)

(D, I, id),(I, I,σ)

Proof. First, we apply Proposition 3.5.6. Proper normal subgroups of S4 are A4 and V4,

hence the only possibilities for H ×Q H are the following:

(1) K = {id} ⟨(A,A),(B,B),(C,C),(D,D)⟩;
(2) K = V4 ⟨(A, I),(B, I),(I,A),(I,B),(C,C),(D,D)⟩;
(3) K = A4 ⟨(A, I),(B, I),(C, I),(I,A),(I,B),(I,C),(D,D)⟩;
(4) K =S4 ⟨(A, I),(B, I),(C, I),(D, I),(I,A),(I,B),(I,C),(I,D)⟩.

We now look for g = (M,N,σ) such that G is generated by H ×Q H and h, i.e. ψ(g) = σ .

By Lemma 3.5.5, the normalizer of H in PGL2(C) is H itself. Therefore, M,N ∈ H. Up to a

multiplication by an element of H ×Q H, we may assume that M = I, so that g = (I,N,σ). We

again argue case by case.

If H ×Q H is of type (1), then the normalization condition (13) implies that N ∈ Z(S4) = {id}.

If H×Q H is of type (2), then [N,P]∈ K for all P ∈ H, which implies N ∈ V4. Multiplying g by an

element of ⟨(I,A),(I,B)⟩ ≃ V4, we get g = (I, I,σ). In the case (3), recall that the quotient of

S4 by ⟨A,B,C⟩ ≃ A4 is generated by the coset of D. Therefore, multiplying g by an element

of ⟨(I,A),(I,B),(I,C)⟩, we achieve g = (I, I,σ) or g = (I,D,σ). Finally, in the case (4), we

can always get g = (I, I,σ).
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Proposition 3.5.10. Assume that H ≃ A5. Then, up to conjugation in Aut(S), there are the

following cases for G, and only them5.

GAP Order Isomorphism class Generators

[120,35] 120 A5 ×Z2 (E,E, id),(F,F, id),(I, I,σ)

[120,34] 120 S5 (E,ξ (E), id),(F,ξ (F), id),(I, I,σ)

No id 7200 A5 ≀Z2 (I,E, id),(I,F, id),(E, I, id),(F, I, id),(I, I,σ)

Proof. We again let g = (M,N,σ)∈ G be an element such that ψ(g) = σ . Since g normalizes

H×Q H, we deduce that M and N normalize H in PGL2(C), hence M,N∈H by Lemma 3.5.5.

We now apply Proposition 3.5.6(2). If H ×Q H is of type (a), then one can multiply g by an

element of H ×Q H to get g = (I, I,σ). In case (b), the normalization condition (13) implies

MN−1 ∈ CA5(A5) = id, hence M = N and we can again replace g = (M,M, id) by (I, I,σ).

Finally, assume that we are in case (c), that is, H ×Q H = {(P,ξ (P)) : P ∈ H)}. Multiplying g

by (M−1,ξ (M−1), id), we may assume M = I. Since for each P ∈ H, one has

(I,N,σ)−1(P,ξ (P), id)(I,N,σ) = (N−1
ξ (P)N−1,P, id) ∈ H ×Q H,

we get P = ξ (N−1ξ (P)N). Since ξ is of order 2, we get that N ∈ Z(A5) = {id}.

Proof of Theorem 3.5.4. If Pic(S)G ≃ Z2, then G is a subgroup of H1 ×H2, where H1 and H2

are finite subgroups of PGL2(C) acting fibrewisely on P1 ×P1. Clearly, we can consider the

direct products of cyclic and dihedral groups as subgroups of a group of type Dn ≀Z2 from the

Theorem, for a suitable n. Furthermore, Zn×A4 embeds into Dn×S4, while Zn×A5 embeds

into Dn ×A5.

Now suppose that Pic(S)G ≃ Z and hence G fits the exact sequence (11). If H is isomorphic

to A4,S4, or A5, then the result follows from Propositions 3.5.7, 3.5.9 and 3.5.10. Let g =

(M,N,σ) ∈ G be an element such that ψ(g) = σ . Then G is generated by H ×Q H and g. In

particular, G is a subgroup of Ĝ = ⟨H ×H,g⟩.

Assume that H is cyclic. Then, up to conjugation in PGL2(C), the group H is generated by

Rn. Since g normalizes H ×Q H, we deduce that M and N are diagonal or anti-diagonal.

On the other hand, g2 ∈ H ×Q H, i.e. the matrices MN and NM are diagonal, hence either

M and N are both diagonal, or both anti-diagonal. Let (u,v) be the affine coordinates on

P1 ×P1, and let σ0 be the automorphism (u,v) 7→ (v,u), i.e. (I, I,σ). Then g is either of the

form g : (u,v) 7→ (av,bu), or of the form g : (u,v) 7→ (av−1,bu−1) for some a,b ∈ C∗.

5. Recall that, according to Proposition 3.5.6, ξ is any fixed outer automorphism of A5.
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In the first case, the automorphism α : (u,v) 7→ (u,a−1v) commutes with H ×H and con-

jugates g to g′ : (u,v) 7→ (v,cu), where c = ab. The group α−1Ĝα = ⟨H ×H,g′⟩ contains an

isomorphic copy of G. Since the automorphism g′2 : (u,v) 7→ (cu,cv) belongs to H×H, we get

c = ωk
n for some k ∈ Z. Multiplying g′ by an automorphism (u,v) 7→ (u,c−1v), which belongs

to H ×H, we find that α−1Ĝα is generated by H ×H and σ0; in particular, it is isomorphic to

Zn ≀Z2.

In the second case, the automorphism β : (u,v) 7→ (u,v−1) normalizes H×H and conjugates

g to g′ : (u,v) 7→ (av,b−1u). Then β−1Ĝβ = ⟨H×H,g′⟩ contains a copy of G, and one repeats

the argument from the previous case.

Assume that H ≃ Dn. Then H is conjugate in PGL2(C) to the group generated by Rn and B.

We may assume n ⩾ 3, since for H ≃ V4 the group G is conjugate to a subgroup of S4 ≀Z2.

Let T ∈ H be any element, then there is P ∈ H so that (T,P, id) ∈ H ×Q H. One has

(N−1,M−1,σ)(T,P, id)(M,N,σ) = (N−1PN,M−1TM, id) ∈ H ×H, (14)

and hence M normalizes H in PGL2(C). Now C = ⟨Rn⟩ is a characteristic subgroup of H

for n ⩾ 3, hence it is invariant under conjugation by M, and therefore M is diagonal or anti-

diagonal. The same obviously holds for N. Now, by multiplying g by an element of H ×H, we

may assume that M and N are both diagonal or both anti-diagonal. We finish the proof by

applying the same process as in the cyclic case.

3.6 Linearization of finite groups acting on Hirzebruch surfaces

In the final section, we study the linearization of finite groups acting on Hirzebruch surfaces Fn

with n ⩾ 0. This section is divided into three parts. In the first part, we study Hirzebruch

surfaces Fn with n⩾ 1. In the second and third parts, we investigate the linearization of groups

acting on the quadric surface F0 ≃ P1 ×P1, according to the G-invariant Picard rank.

3.6.1 G-Hirzebruch surfaces

The goal of this section is to prove the following linearization criterion for Hirzebruch sur-

faces Fn with n ⩾ 1.

Theorem 3.6.1. Let n ⩾ 1 be an integer and G ⊂ Aut(Fn) be a finite group acting on Fn,

such that π : Fn → P1 is a G-conic bundle. Denote by Ĝ the image of G in the automorphism

group of the base Aut(P1)≃PGL2(C). Then G is linearizable if and only if one of the following

holds:

1. n is odd;

2. Ĝ is cyclic;
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3. Ĝ is isomorphic to Dm with m ∈ Z odd.

Before proving this, we need some easy lemmas. First, recall the following classical definition.

Definition 3.6.2. Let n ⩾ 0 be a non-negative integer.

1. An elementary transformation of the Hirzebruch surface Fn is the following birational

transformation. Let ϕ : Y → Fn be the blow-up of a point p on a fibre F , F̃ be the

strict transform of F , Σ̃n be the strict transform of the (−n)-section Σn ⊂ Fn and E be

the exceptional divisor. We have (F̃)2 = (ϕ∗F −E)2 = F2 − 1 = −1. Then there is a

morphism ψ : Y → Z blowing down F̃ . If p /∈ Σn, then Σ̃2
n = Σ2

n = −n and Σ̃n intersects

F̃ transversely in exactly one point. Thus, ψ(Σ̃n)
2 = −n+ 1 and Z ≃ Fn−1. If p ∈ Σn,

then Σ̃2
n = Σ2

n −1 =−n−1, Σ̃n ∩ F̃ =∅, so ψ(Σ̃n)
2 =−n−1 and Z ≃ Fn+1. Therefore,

one has the following diagram for an elementary transformation of Fn.

Y
ϕ

{{

ψ

((
Fn

��

// Z = Fn+1 or Fn−1

��
P1 P1

(15)

2. Similarly, we define a G-elementary transformation Fn 99K Fm, where G is a finite group

acting on Fn. In the diagram (15), the map ϕ is the blow-up of a G-orbit of length ℓ, and

ψ is the contraction of the strict transforms of the fibres through the blown-up points.

We assume that no two points of the orbit lie in the same fibre; in what follows, we refer

to this condition as to “conic bundle general position”. If the blown-up orbit belongs to

Σn, then m = n+ ℓ.

3. More generally, given a G-conic bundle π : S → P1, we define a G-elementary trans-

formation (or a link of type II between G-conic bundles) χ : S 99K S′, where π ′ : S′ → P1

is another G-conic bundle, as the blow-up of a G-orbit on S, followed by the contraction

of the strict transforms of the fibres through the blown-up points. Once again, we

assume that no two points of the orbit lie in the same fibre. Note that χ does not change

the number of singular fibres, i.e. one has K2
S = K2

S′ .

Lemma 3.6.3. Any subgroup G⊂Aut(Fn) preserves a curve on Fn which has self-intersection n

and is disjoint from Σn.
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Proof. Recall that S = Fn has the unique section Σn ⊂ Fn of self-intersection −n. Let F be a

fibre of S. The complete linear system |Σn+nF | induces the birational morphism ϕ : S → S′ ⊂
Pn+1, which is the contraction of Σn onto the vertex of the cone S′. As Σn is preserved by G,

this contraction is G-equivariant. Writing Pn+1 = P(L⊕V ) with L being 1-dimensional vector

space corresponding to the unique singular (and hence G-fixed) point of S′, we see that P(V )

is a G-invariant hyperplane. It intersects S′ in a G-invariant rational normal curve of degree n.

Its preimage on S under ϕ is the required curve.

Now we will analyze G-elementary transformations of Hirzebruch surfaces in greater detail,

based on the “arithmetic” of possible G-orbits; a similar idea was used, e.g. in (Cheltsov, 2014,

Lemma B.15).

Lemma 3.6.4. Let n ⩾ 1 and consider a G-conic bundle π : Fn → P1. One has the following:

1. Let ℓ be the length of one of the orbits under the action of Ĝ on P1. Then the conic

bundle Fn is G-birational to F|n+kℓ|, for any k ∈ Z.

2. Let ℓi, i = 1, . . . ,r, be the lengths of the orbits under the action of Ĝ on P1, and let

d = gcd{ℓi}. Then Fn is birational to F|n+kd| for any k ∈ Z.

Proof. (1) The blow-up of Fn at a G-orbit of length ℓ contained in Σn and contraction of the

proper transforms of the fibres give a G-birational map to Fn+ℓ. Moreover, the action of G

on the −(n+ ℓ)-curve of Fn+ℓ is the same as the action of G on the (−n)-curve of Fn. It

proves the lemma for k ⩾ 0. Let C be a G-invariant n-curve, given by Lemma 3.6.3. Notice

that since C and Σn are sections of the conic bundle, the action of G on C is the same as the

action of G on Σn. The blow-up of Fn at a G-orbit of length ℓ contained in C and contraction

of the proper transforms of the fibres gives a G-birational map to F|n−ℓ|. Moreover, the action

of G on the −|n− ℓ|-curve of F|n−ℓ| is the same as the action of G on the (−n)-curve of

Fn. We proceed by induction. Suppose that we constructed a sequence of G-elementary

transformations Fn 99K F|n−kℓ|, where k ⩾ 1. If n− kℓ⩾ 0, then an elementary transformation

at a G-orbit of ℓ points, lying on the G-invariant n-curve as above, gives a map Fn−kℓ 99K

F|n−(k+1)ℓ|. If n−kℓ < 0 then we use an elementary transformation at a G-orbit lying on Σ|n−kℓ|

to get F|n−kℓ| = Fkℓ−n 99K Fkℓ−n+ℓ = F|n−(k+1)ℓ|.

(2) By Bézout’s identity, we have

kd = a1ℓ1 + . . .+asℓs −as+1ℓs+1 − . . .− ℓrar, (16)

where 0 ⩽ s ⩽ r and ai ⩾ 0 for all i = 1, . . . ,r. If k ⩾ 0, then, by performing G-elementary

transformations as in (1), we get a sequence

Fn
χ0
99K Fn+a1ℓ1

χ1
99K Fn+a1ℓ1+a2ℓ2

χ2
99K . . . 99K Fn+a1ℓ1+...+asℓs

χs
99K Fn+a1ℓ1+...+asℓs−as+1ℓs+1

χs+1
99K . . . ,

(17)
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which results in Fn+kd . Suppose now that k < 0, and again write kd in the form (16). Per-

form the sequence of transformations (17) up to the s-th step. The map χs then leads to

F|n+a1ℓ1+...+asℓs−as+1ℓs+1| = Fas+1ℓs+1−n−a1ℓ1−...−asℓs . We can proceed by mapping

Fas+1ℓs+1−n−a1ℓ1−...−asℓs 99K Fas+2ℓs+2+as+1ℓs+1−n−a1ℓ1−...−asℓs = F|n+a1ℓ1+...+asℓs−as+1ℓs+1−as+2ℓs+2|,

and so on, until we get F|n+kd|.

Now, we deduce several corollaries.

Corollary 3.6.5. If Ĝ is cyclic or isomorphic to Dm with m odd, then Fn is G-birational to Fk,

for any non-negative integer k. In particular, G is linearizable.

Proof. If Ĝ is cyclic, then it fixes a point on P1. If Ĝ is isomorphic to Dm with m odd, then there

is an orbit of length 2 and of odd length by Proposition 1.7.6. In both cases, by Lemma 3.6.4

(2), the surface Fn is G-birational to F|n+s| for any s ∈ Z, hence the first claim. In particular, by

taking s = 1−n, we arrive at F1 where we can G-equivariantly contract the unique (−1)-curve

to get P2.

Corollary 3.6.6. The G-conic bundle Fn is G-birational to any F|n+2k|, for any k ∈ Z. So, if

n is even, then Fn is G-birational to the G-conic bundle F0 ≃ P1 ×P1. If n is odd, then Fn is

G-birational to F1 and hence G is linearizable in this case.

Proof. If Ĝ is cyclic, we conclude using Corollary 3.6.5. Otherwise, Proposition 1.7.6 implies

that there is always a pair (or a triple) of orbits of Ĝ having 2 as the greatest common divisor

of their lengths. By Lemma 3.6.4 (2), we conclude that Fn is G-birational to F|n+2k|, for any

k ∈ Z.

3.6.2 Quadrics with invariant Picard group of rank 1

We will classify finite linearizable subgroups of Aut(S) according to the isomorphism class of

H in the exact sequence (11).

Proposition 3.6.7. If H is cyclic, then G is linearizable.

Proof. We claim that G has a fixed point, so the stereographic projection from it linearizes the

action of G. Indeed, the group H ×Q H is contained in H ×H, hence, it has exactly 4 fixed

points on S. We can choose the coordinates on S so that these points are

p1 = ([1 : 0], [1 : 0]), p2 = ([1 : 0], [0 : 1]), p3 = ([0 : 1], [1 : 0]), p4 = ([0 : 1], [0 : 1]).
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Let g ∈ G be an element which is mapped to the generator of Z2 in the exact sequence (11),

i.e. which does not preserve the rulings of S. Then G is generated by g and H ×Q H. Since

g normalizes H ×Q H, it permutes the points p1, p2, p3, p4. Since g swaps the rulings of S, it

fixes p1 and p3, or it fixes p2 and p4, or it permutes p1, p2, p3 and p4 cyclically. In the first two

cases, we are done. The third case is impossible, since g2 would swap pi with pi+2, while it

belongs to H ×Q H, i.e. fixes all four points.

Remark 3.6.8. In the language of Sarkisov program, we linearize the action of G as follows.

Let η : T → S = P1×P1 be the blow-up of a G-fixed point p ∈ S. The surface T is a del Pezzo

surface of degree 7 with three exceptional curves F1,F2, and E, where E is the η-exceptional

divisor, F1 and F2 are the preimages of fibres through p. One has E ·F1 = E ·F2 = 1, and

F1 ·F2 = 0. Then there is a G-contraction η ′ : T → P2 of F1 and F2 onto a pair of points.

We are going to show that G is not linearizable in any of the other cases.

Observation 3.6.9. We use the notation of Section 1.6.1. Every Sarkisov G-link starting from

S is either of type I, where η blows up a G-orbit of length 2, or is of type II, and one of the

following holds:

1. S ≃ S′, d = d′ = 7, χ is a birational Bertini involution;

2. S ≃ S′, d = d′ = 6, χ is a birational Geiser involution;

3. S′ is a del Pezzo surface of degree 5, d = 5, d′ = 2;

4. S′ ≃ P1 ×P1, d = d′ = 4;

5. S′ is a del Pezzo surface of degree 6, d = 3, d′ = 1;

6. S′ ≃ P2, d = 1, d′ = 2.

Birational Geiser and Bertini involutions lead to a G-isomorphic surface. By (Yasinsky, 2023,

Proposition 4.3), links centred at orbits of length 4 also result in a surface which is G-isomorphic

to S. Therefore, any G-link starting from S and leading to a non-isomorphic surface must be

centred at an orbit of length d ∈ {1,2,3,5}.

Proposition 3.6.10. Let S = P1×P1 and G ⊂ Aut(S) be a finite group such that Pic(S)G ≃ Z.

Assume that in the setting of the exact sequence (11) the group H is isomorphic to A4,S4 or

A5. Then S is G-birationally rigid. In particular, G is not linearizable.

Proof. Note that an orbit of G is a disjoint union of orbits of H×Q H. Therefore, by Proposition

1.7.6 and Lemma 1.7.11, any orbit of G on S has length 2m ⩾ 4. Hence S can admit only

G-birational Geiser involutions and links at points of degree 4. As was observed before, they

give a G-isomorphic surface.

Proposition 3.6.11. Let S = P1×P1 and G ⊂ Aut(S) be a finite group such that Pic(S)G ≃ Z.

Assume that in the setting of the exact sequence (11) the group H is dihedral Dn. Then G is

not linearizable.
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Proof. We may assume that there is a G-orbit Σ ⊂ S in general position, i.e. its blow-up gives

a del Pezzo surface. Then Lemma 1.7.12 implies that Σ is a disjoint union of at most 2 orbits of

H×Q H. Suppose that Σ=Σ1⊔Σ2, where |Σ1|= |Σ2|. By Proposition 1.7.6 and Lemma 1.7.11,

these cardinalities are divisible by 2 or n. Then |Σ| is an even number ⩾ 4, and therefore S is G-

birationally rigid. So, we may assume that Σ is an orbit of H ×Q H. By the same observations,

we only need to investigate orbits of size 2, 3 and 5.

Suppose |Σ|= 5, i.e. H ≃ D5. The link S 99K S′ centred at Σ gives a G-del Pezzo surface S′ of

degree 5. Since Q can be isomorphic to {id}, Z2 or D5, we find that either G is an extension

of Z2 by D5, or G contains a copy of Z2
5 by Lemma 1.7.9. In the latter case, G cannot be

embedded into Aut(S′)≃S5, and neither D5 ×Z2 can. Hence we may assume that G ≃ F5.

But in this case, G cannot be linearized by Proposition 3.4.3.

If |Σ|= 3, then H ≃S3, and the blow-up of Σ gives a del Pezzo surface T of degree 5. Since

Q can be isomorphic to {id}, Z2 or S3, we find that either G ≃S3 ×Z2, or G contains a copy

of Z2
3 by Lemma 1.7.9. In the latter case, G does not embed into Aut(T ) ≃ S5, hence we

may assume that we are in the former case. Then our Sarkisov link ends up on a G-del Pezzo

surface of degree 6. Since G ≃S3 ×Z2, it cannot be linearized by Proposition 3.4.14.

Finally, case |Σ| = 2 corresponds to a link of type I leading to the del Pezzo surface T of

degree 6 with a G-conic bundle structure. All Sarkisov G-links starting from a G-conic bundle

with 2 singular fibres are either G-elementary transformations T 99K T ′, or links T ′ → S′ of type

III leading back to a G-del Pezzo surface S′ of degree 8, so the composition of such links looks

like in Diagram 1. In view of Propositions 3.6.7, 3.6.10 and the previous cases, it is enough to

show that G does not fix a point on S′, and hence cannot be further linearized. Let us denote

cyclically the six (−1)-curves forming a hexagon on T by E1, . . . ,E6. We may assume that E1

and E4 are the exceptional divisors over Σ, so in particular the action of G must swap E1 and

E4. They both form sections of the G-conic bundle π : T → P1. On the other hand, E2 +E3

and E5 +E6 are the two singular fibres of π , whose irreducible components are swapped by

G. By Theorem 3.3.1, the G-conic bundle π ′ : T ′ → P1 is again a del Pezzo surface of degree

6. Denote by D1 and D2 the singular fibres of π ′. Besides their irreducible components, the

surface T ′ has two more (−1)-curves L1 and L2, which are disjoint sections of π ′, swapped by

G. Note that the points E2∩E3 and E5∩E6 are unique G-fixed points on T . Since a sequence

of G-elementary transformations T 99K T ′ is an isomorphism away from G-orbit of curves of

length > 1, the singular points of D1 and D2 are the unique G-fixed points on T ′. Thus, the

contraction T ′ → S′ of L1 and L2 leaves no G-fixed points on S′.
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3.6.3 Quadrics with invariant Picard group of rank 2

Suppose that Pic(S)G ≃ Z2. We endow S = P1 ×P1 with coordinates ([x0 : x1], [y0 : y1]) and

fix two projections π1 and π2 to [x0 : x1] and [y0 : y1], respectively. We often use the affine

coordinates x = x1/x0 and y = y1/y0 on S, so that the points ([1 : 0], [1 : 0]) and ([0 : 1], [0 :

1]) correspond to (0,0) and (∞,∞). We follow Notations 1.7.5 for the generators of finite

subgroups of PGL2(C).

By Proposition 3.5.1, the group G is the fibred product H1 ×Q H2, where H1 and H2 are

finite subgroups of PGL2(C), acting on S fibrewisely (projections of G induced by π1 and

π2, respectively). The crucial observation, which follows from (Dolgachev & Iskovskikh, 2009,

Propositions 7.12, 7.13), is that G is linearizable if and only if there is a sequence of Sarkisov

G-links

S = F0
χ0
99K S1

χ1
99K S2

χ2
99K S3

χ3
99K . . .

χN−1
99K SN = F1

χN−→ P2,

where Si ≃ Fni for all i, the links χi for i = 0, . . . ,N−1 are either G-elementary transformations

of Hirzebruch surfaces, or links of type IV (in which case Si ≃ Si+1 ≃ P1 ×P1), and the last

link χN is necessarily of type III, namely the equivariant blow-down of the unique (−1)-curve

on F1 to the G-fixed point on P2.

The main result of this subsection is the following.

Theorem 3.6.12. The group G = H1 ×Q H2 is linearizable if and only if one of the following

holds:

1. Both H1 and H2 are cyclic;

2. H1 is cyclic, and H2 ≃ Dn, where n ⩾ 1 is odd, or vice versa;

3. H1 ≃ Dn,H2 ≃ Dm, where n,m ⩾ 3 are odd, and G is isomorphic to a dihedral group.

We split the proof into several auxiliary statements.

Lemma 3.6.13. The group G = Zn ×Q Zm is linearizable for any n,m ∈ Z>0.

Proof. We may assume that G is a subgroup of ⟨Rn⟩× ⟨Rm⟩, and hence fixes the point ([1 :

0], [1 : 0]); the stereographic projection from this point linearizes G.

Lemma 3.6.14. Let n and m be integers, with n odd. The group G = Dn×QZm is linearizable.

Proof. The group Zm fixes a point on P1, and hence G acts on the fibre F over this point.

Therefore, the image of H1 ×Q H2 in Aut(F) ≃ PGL2(C) is isomorphic to Dk with k odd. By

Proposition 1.7.6, there is a G-orbit of size k on F . A G-elementary transformation centred at

such orbit leads to the Hirzebruch surface Fk and we are done by Corollary 3.6.6.

Lemma 3.6.15. If H1 or H2 is isomorphic to A4,S4,A5, or D2n, then G is not linearizable.
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Proof. We start with the following observation. Consider a G-elementary transformation

T
η

}}

η ′

  
F2n

χ //

  

Fm

~~
P1

centred at a G-orbit p1, . . . , p2k ∈ F2n of length 2k ⩾ 2. Let us show that m is even. Indeed,

assume that m is odd. For i = 1, . . . ,2k, let Fi ⊂ F2n be the fibres through the blown-up

points pi, let Ei = η−1(pi) ⊂ T be the exceptional divisors over these points, F̃i ⊂ T be

strict transforms of Fi, and qi = η ′(Fi) be the resulting G-orbit on Fm. Suppose that the

curve Σm ⊂ Fm contains t ⩾ 0 points among qi. Its strict transform Σ̃m ⊂ T under η ′ then

satisfies Σ̃2
m = −m − t, it intersects exactly t curves F̃i on T , and 2k − t curves Ei on T .

The η-images of these 2k − t curves are the blown-up points lying on C = η(Σ̃m). Thus,

C2 − (2k− t) = Σ̃2
m =−m− t, hence C2 = 2k−2t −m is odd, which is impossible6 on F2n.

Now let H1 and H2 be as in the condition of the Lemma. It is sufficient to show that there is no

sequence of G-elementary transformations (possibly alternating with links of type IV on F0)

from S = F0 to F1. By Proposition 1.7.6 and Lemma 1.7.11, the group G = H1 ×Q H2 has only

orbits of even length on S. Thus, the first G-elementary transformation brings us to some F2n.

Since the lengths of the orbits is preserved under G-fibrewise transformations, a sequence of

G-elementary transformations can only lead to Hirzebruch surfaces FN with N even.

It remains to study the linearizability of G when H1 ≃ Dn and H2 ≃ Dm, with n and m odd. By

using Notations 1.7.5, we can suppose that Dn = ⟨Rn,B⟩ and Dm = ⟨Rm,B⟩ as subgroups of

PGL2(C). Recall that possible fibre products Dn ×Q Dm were essentially described in Lemma

1.7.14.

Lemma 3.6.16. Let n,m be odd positive integers. If G = Dn ×Q Dm is not isomorphic to a

dihedral group, then G is not linearizable.

Proof. If G is linearizable, then there is a sequence of Sarkisov G-links S1 = P1 ×P1 99K

S2 99K . . . 99K Sk = F1 → P2, where the last map is the G-equivariant blow-down of the

unique (−1)-curve on F1 — a link of type III. The image of this curve is a G-fixed point

p ∈ P2, and hence G admits a faithful representation in GL(TpP2)≃ GL2(C). We conclude by

Lemma 1.7.14.

6. Recall that Pic(FN) is generated by the class of a fibre F and the (−N)-section ΣN (or a transversal fibre Σ0,
such that Σ0 ·F = 1, when N = 0). One has F2 = 0, F ·ΣN = 1, Σ2

N =−N. So, for a curve C ∼ aF +bΣN one has
C2 = 2ab−Nb.
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Proposition 3.6.17 (Linearization via the Euclidean algorithm). Let n and m be odd positive

integers. Suppose that the group G = Dn ×Q Dm is dihedral. Then G is linearizable.

Proof. For convenience, we set D1 = Z2, so that G = Dn ×Dd Dm, where d ⩾ 1 divides both n

and m. By Lemma 1.7.9, there is a short exact sequence of groups

1 ⟨(Rd
n , id)⟩×⟨(id,Rd

m)⟩ G Dd 1.
ρ

(18)

Since G is dihedral, then kerρ must be cyclic, so gcd(n/d,m/d) = 1 and kerρ is generated by

the element (Rd
n ,R

d
m). By Remark 1.7.10, the group G is generated by (Rd

n ,R
d
m) and (B,Rv

mB)

when d = 1, and by (Rd
n ,R

d
m), (Rn,Ru

m) and (B,Rv
mB) when7 d > 1; here, u,v are some positive

integers. Let k = v/2 if v is even and k = (v+m)/2 if v is odd. By conjugating G in Aut(S) by

the automorphism (id,Rk
m), we may assume v = 0.

Let M = nm. Then

(Rd
n ,R

d
m) = (Rdm

M ,Rdn
M ), (Rn,Ru

m) = (Rm
M,Rnu

M ).

Regardless of whether d = 1 or d > 1, the elements of G are all of the form (Ra
M,Rb

M) or

(BRa
M,BRb

M) for some positive integers a,b. Since the latter are involutions, we can assume

that the characteristic cyclic subgroup of G is generated by an element of the form (Ra
M,Rb

M),

i.e. by the map (x,y) 7→ (ωa
Mx,ωb

My).

Consider the following birational self-map of S and its inverse:

ϕ : (x,y) 799K (x,x−1y), ϕ
−1 : (x,y) 799K (x,xy).

Given a biregular automorphism g : (x,y) 7→ (αx,βy) of S for some α,β ∈ C∗, we have the

following commutative diagram

S
g //

ϕ

��

S

ϕ

��
S

g // S,

where g : (x,y) 7→ (αx,α−1βy) is ϕ ◦g◦ϕ−1. The conjugation of the automorphism (B,B) by

ϕ gives the same action. To sum up, ϕ is a birational equivalence between (P1 ×P1,G) and

(P1 ×P1,G), where G is generated by

(x,y) 7→ (ωa
Mx,ωb−a

M y), (x,y) 7→ (x−1,y−1).

7. Note that the second case includes the sub-case n = m = d. As follows from Goursat’s lemma, we have G ≃
{(g,ϕ(g)) : g∈Dn}, where ϕ ∈Aut(Dn). It is well known that in the standard presentation of Dn, its automorphism
group is generated by the maps r 7→ r j, s 7→ rts, which agrees with the generators we chose.
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The biregular automorphism σ : (x,y) 7→ (y,x) conjugates the map (x,y) 7→ (αx,βy) to (x,y) 7→
(βx,αy) and does not change (B,B). Therefore, up to conjugation by σ , we may assume

0 ⩽ a ⩽ b. We now run the Euclidean algorithm for a and b: first, by iterating the conjugation

by ϕ , we can replace (Ra
M,Rb

M) by (Ra
M,Rr

M), where r is the remainder of the division of b by

a. Using σ , we replace (Ra
M,Rr

M) by (Rr
M,Ra

M), perform Euclidean division of a by r, and so

on. The algorithm results in the generator (Rℓ
M, id), where ℓ= gcd(a,b).

Hence, we birationally conjugated G to the dihedral group generated by (Rℓ
M, id) and (B,B).

The fibre over y = 1 is now faithfully acted on by G. Making an elementary transformation at

the orbit of size N = |G|/2 in this fibre, we arrive to FN and hence can further linearize the

action of G.

Proof of Theorem 3.6.12. It follows from Lemmas 3.6.13–3.6.16 and Proposition 3.6.17.

Appendix: Magma code

We provide the Magma code that determines the GAP ID of finite subgroups of Aut(P1×P1)≃
PO(4) defined by their matrix generators. It is also available on the GitHub page of the first

author; see Pinardin (2024). The code provides the following functions.

1. AutPn(points, images), which, given two tuples of n+2 points in Pn in general position,

returns the automorphism of Pn that sends the first tuple to the second one.

2. AutQuadSurf(M1,M2,s). Given an automorphism f =(M1,M2,s)∈PGL2
2⋊Z2 ∼=Aut(P1×

P1), this function returns the automorphism of P3 which restricts to f in the automorph-

ism group of the Segre embedding of P1 ×P1.

3. SGPGL(matrices), which returns the subgroup of PGLn generated by a given set of

matrices.

4. The main function, SGAutP1P1(auts), which returns the subgroup of PGL4 inducing the

subgroup of automorphisms of P1 ×P1 generated by the list of automorphisms auts.

The function IdentifyGroup(G) is a built-in Magma command which returns the GAP ID

of a finite group, if it exists. Below, we use the functions mentioned above to check the

generators announced in Notation 1.7.5, and the GAP ID’s of the groups in Proposition 3.5.7

and Proposition 3.5.9. The last group of this proposition is of order 1152, so does not have a

GAP ID. But it is easy to show that its isomorphism class is S4 ≀Z2.

1 K:= AlgebraicClosure(Rationals ());

2 K4:= CartesianPower(K,4);

3 R<x>:= PolynomialRing(K);

4 i:=Roots(x^2+1) [1,1];

5 w5:=Roots(x^5-1)[2,1];

6
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7 A:= Matrix(K,2,[1,0,0,-1]);

8 B:= Matrix(K,2,[0,1,1,0]);

9 C:= Matrix(K,2,[i,-i,1,1]);

10 D:= Matrix(K,2,[1,-i,i,-1]);

11 E:= Matrix(K,2,[1,1-w5 -w5^-1,1,-1]);

12 F:= Matrix(K,2,[w5 ,0,0,1]);

13 I:= Matrix(K,2,[1,0,0,1]);

14

15

16 AutPn:= function(points ,images)

17 points :=[<t:t in P>:P in points ];

18 images :=[<t:t in Q>:Q in images ];

19 n:=# points [1]-1;

20 A1:= AffineSpace(K,n+1);

21 DefPols1 :=[&+([ A1.j*points[j+1][i]:j in [1..n+1]] cat [-

points [1][i]]):i in [1..n+1]];

22 X1:= Scheme(A1,DefPols1);

23 sols1:= RationalPoints(X1);

24 eltsM1 :=[];

25 for i in [1..n+1] do

26 P:=[ points[i+1,j]:j in [1..n+1]];

27 eltsM1 := eltsM1 cat ElementToSequence(sols1 [1][i]* Vector(K

,n+1,P));

28 end for;

29 M1:= Transpose(Matrix(K,n+1,eltsM1));

30 DefPols2 :=[&+([ A1.j*images[j+1][i]:j in [1..n+1]] cat [-

images [1][i]]):i in [1..n+1]];

31 X2:= Scheme(A1,DefPols2);

32 sols2:= RationalPoints(X2);

33 eltsM2 :=[];

34 for i in [1..n+1] do

35 Q:=[ images[i+1,j]:j in [1..n+1]];

36 eltsM2 := eltsM2 cat ElementToSequence(sols2 [1][i]* Vector(K

,n+1,Q));

37 end for;

38 M2:= Transpose(Matrix(K,n+1,eltsM2));

39 M:=M2*M1^-1;

40 return M;

41 end function;

42

43 AutQuadSurf := function(M1,M2,s)

44 M1:= Matrix(K,2, ElementToSequence(M1));

45 M2:= Matrix(K,2, ElementToSequence(M2));

46 if s eq 0 then
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47 g:=map <K4->K4|x:-><(ElementToSequence(M1*Matrix(K,2,1,[x

[1],x[2]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[3],x[4]])))[1],( ElementToSequence(M1*Matrix(K,2,1,[x

[1],x[2]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[3],x[4]])))[2],( ElementToSequence(M1*Matrix(K,2,1,[x

[1],x[2]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[3],x[4]])))[3],( ElementToSequence(M1*Matrix(K,2,1,[x

[1],x[2]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[3],x[4]])))[4]>>;

48 else

49 g:=map <K4->K4|x:-><(ElementToSequence(M1*Matrix(K,2,1,[x

[3],x[4]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[1],x[2]])))[1],( ElementToSequence(M1*Matrix(K,2,1,[x

[3],x[4]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[1],x[2]])))[2],( ElementToSequence(M1*Matrix(K,2,1,[x

[3],x[4]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[1],x[2]])))[3],( ElementToSequence(M1*Matrix(K,2,1,[x

[3],x[4]])) cat ElementToSequence(M2*Matrix(K,2,1,[x

[1],x[2]])))[4]>>;

50 end if;

51 Phi:=map <K4->K4|x:-><x[1]*x[3],x[1]*x[4],x[2]*x[3],x[2]*x

[4]>>;

52 PhiInv :=map <K4->K4|x:-><x[1]+x[2],x[3]+x[4],x[1]+x[3],x[2]+x

[4]>>;

53 g1:=map <K4->K4|x:->Phi(g(PhiInv(x)))>;

54

55 points:=[<2,8,1,4>,<1,1,0,0>,<1,0,1,0>,<0,1,0,1>,<0,0,2,1>];

56 images :=[g1(points [1]),g1(points [2]),g1(points [3]),g1(points

[4]),g1(points [5])];

57 return AutPn(points ,images);

58 end function;

59

60 SGPGL:= function(matrices)

61 dimension :=Nrows(matrices [1]);

62 matrices :=[M/Roots(x^dimension -R!Determinant(M))[1,1]:M in

matrices ];

63 G:=sub <GL(dimension ,K)|[GL(dimension ,K)|M: M in matrices]>;

64 D:=[M: M in Center(G) | IsScalar(M)];

65 GP:=quo <G|D>;

66 return(GP);

67 end function;

68

69 SGAutP1P1 := function(triples)

70 matrices :=[ AutQuadSurf(t[1],t[2],t[3]):t in triples ];
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71 return SGPGL(matrices);

72 end function;

73

74 print "GAP ID of the subgroup of PGL_2 generated by A,B and C:",

IdentifyGroup(SGPGL([A,B,C]));

75 print "GAP ID of the subgroup of PGL_2 generated by A,B,C and D:"

, IdentifyGroup(SGPGL ([A,B,C,D]));

76 print "GAP ID of the subgroup of PGL_2 generated by E and F:",

IdentifyGroup(SGPGL([E,F])),"\n";

77

78 print "GAP IDs of the subgroups of Aut(P^1xP^1) given in

Proposition 5.12:\n";

79

80 IdentifyGroup(SGAutP1P1([<A,A,0>,<B,B,0>,<C,C,0>,<I,I,1>]));

81 IdentifyGroup(SGAutP1P1([<A,A,0>,<B,B,0>,<C,C,0>,<D,D,1>]));

82 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<I,I,1>]));

83 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<I,C,1>]));

84 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<I,C^2,1>]));

85 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<D,D,1>]));

86 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<D,C*D,1>]));

87 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<D,C^2*D,1>]));

88 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,I,0>,<I,I,1>]));

89 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,I,0>,<D,D,1>]));

90

91 print "\n GAP IDs of the subgroups of Aut(P^1xP^1) given in

Proposition 5.12:\n";

92

93 IdentifyGroup(SGAutP1P1([<A,A,0>,<B,B,0>,<C,C,0>,<D,D,0>,<I,I

,1>]));

94 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,C,0>,<D,D,0>,<I,I

,1>]));

95 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,I,0>,<D,D,0>,<I,I

,1>]));

96 IdentifyGroup(SGAutP1P1([<A,I,0>,<B,I,0>,<C,I,0>,<D,D,0>,<I,D

,1>]));

97

98 //The last group is of order 1152, hence does not have a GAP ID.

But it is easy to show that its isomorphism class is S4 \wr

C_2.

99

100 G:= SGAutP1P1([<A,I,0>,<B,I,0>,<C,I,0>,<D,I,0>,<I,I,1>]);

101 print "Last group. Order: ",Order(G)," description: ",GroupName(G

);



Chapter 4

A5-equivariant geometry of quadric

threefolds

"Cela ne sert a rien, sauf si je dois compter jusqu’a cinq. Mais il ne faut pas que je dépasse cinq, car je
ne connais pas six. Je suis battu."

OSS 117

We classify G-Mori fibre spaces equivariantly birational to smooth quadric threefolds with

fixed-point free actions of the alternating group G=A5. We deduce that such quadric threefolds

are G-solid and the G-actions on them are not linearizable. The results presented in this

chapter have been obtained in collaboration with Zhijia Zhang, see Pinardin and Zhang (2025b).

All authors have approved the inclusion of this work in the present thesis and acknowledge

equal contribution.

4.1 Introduction

Throughout, the notation G will stand for the alternating group A5 of order 60, unless otherwise

specified. We restrict ourselves to smooth quadric threefolds X ⊂ P4 carrying generically free

actions of G such that XG ̸= /0, since otherwise a projection from a G-fixed point on X yields a

G-birational map X 99K P3. The arising G-actions on P3 also have fixed points.

Over a non-algebraically closed field, a smooth quadric hypersurface is rational if and only

if it has a rational point. Surprisingly, linearizability of group actions on quadrics is a more

intricate problem, see, e.g., Hassett and Tschinkel (2024). Many obstructions naturally vanish

on quadrics, including group cohomology, see Bogomolov and Prokhorov (2013); Kresch and

Tschinkel (2022a) and the dual complex of Esser (2024). See (Cheltsov, Tschinkel, & Zhang,



4.1. Introduction 75

2024, Section 2) for an overview of known obstructions. Non-linearizable actions on quadric

threefolds have been found using the Burnside formalism in (Tschinkel et al., 2023, Example

9.2) and Noether-Fano inequality in Cheltsov, Sarikyan, and Zhuang (2023); Cheltsov and

Shramov (2014). However, the first is not applicable to our case.

From representation theory, we know that any fixed-point free G-action on a smooth quadric

threefold X is isomorphic to one of the following two cases, which we refer to as the standard

and nonstandard actions:

1. standard action:

X = X1 =
{

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 0

}
⊂ P4

x1,...,x5

with the G-action generated by

(x) 7→ (x2,x1,x4,x3,x5), (x) 7→ (x5,x1,x2,x3,x4). (1)

2. nonstandard action:

X = X2 =

{
∑

1≤i≤ j≤5
xix j = 0

}
⊂ P4

x1,...,x5
(2)

with the G-action generated by

(x) 7→ (x4,x1,x5,x2,−x1 − x2 − x3 − x4 − x5),

(x) 7→ (x4,−x1 − x2 − x3 − x4 − x5,x1,x3,x2). (3)

Our goal is to find all G-Mori fibre spaces that are G-birational to X1 and X2 respectively,

using classical techniques from birational rigidity, based on the celebrated Noether–Fano

inequalities. The same has been carried out in Cheltsov, Sarikyan, and Zhuang (2023) to

show the non-linearizability of the S5-action on X1 via the S5-permutations on coordinates.

Our work generalizes their arguments to other actions.

These quadrics are G-birational to certain singular cubic threefolds. By (Cheltsov, Tschinkel,

& Zhang, 2024, Section 6), up to isomorphism, there exists a unique cubic threefold Y1 with

5A1-singularities and invariant under the G-action given by (1). By (Cheltsov, Marquand, et

al., 2024, Lemma 8.3), there is a unique cubic threefold Y2 with 5A2-singularities and invariant

under the G-action given by (3). See Section 4.2 for explicit equations of Y1 and Y2.

Our main results are the following:

Theorem 4.1.1. The only G-Mori fibre spaces that are G-birational to the quadric threefold X1

are X1 and the cubic threefold Y1.

Theorem 4.1.2. The only G-Mori fibre spaces that are G-birational to the quadric threefold X2

are X2 and the cubic threefold Y2.
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There is also a nonstandard G′ =S5-action on X2, generated by (3) and the involution

(x) 7→ (x3,x4,x1,x2,−x1 − x2 − x3 − x4 − x5).

We prove:

Theorem 4.1.3. The only G′-Mori fibre spaces that are G′-equivariantly birational to the

quadric threefold X2 are X2 and the cubic threefold Y2.

A G-variety is called G-solid if it is not G-birational to a G-Mori fibre space over a positive

dimensional base. Our results together with those of (Cheltsov, Sarikyan, & Zhuang, 2023,

Theorem 3.1) imply that:

Corollary 4.1.4. Let G = A5 or S5, and X a smooth quadric threefold carrying a generically

free G-action. Then the following are equivalent

• G does not fix any point on X ,

• the G-action on X is not linearizable,

• X is G-solid.

Note that all such actions on quadric threefolds are known to be stably linearizable by (Chelt-

sov, Tschinkel, & Zhang, 2025, Theorem 4.1).

Here’s the roadmap of the paper: in Section 1.6.4, we recall basic tools from birational geo-

metry. In Section 4.2, we present facts about A5-equivariant geometry of quadrics. In Sec-

tions 4.3 – 4.6, we prove technical results on singularities of certain log pairs on quadric and

cubic threefolds. In Section 4.7, we prove that these technical results imply Theorem 4.1.1

and Theorem 4.1.2, and derive a proof of Theorem 4.1.3.

Acknowledgments: The authors are grateful to Ivan Cheltsov for his careful guidance and

detailed feedback on a first draft of the manuscript, to Yuri Tschinkel for his interest and

comments, and to Joseph Malbon for helpful discussions. Part of the paper was completed

during the semester-long program Morlet Chair at CIRM, Luminy. The authors are thankful for

its hospitality.

4.2 A5-actions on quadric threefolds

Let X be a smooth quadric threefold carrying a generically free regular action of G = A5.

Assume that there exists a G-orbit Σ of 5 points in general position in X . Up to a change of

variables, we may also assume that the five points are five coordinate points of P4. Consider

the standard Cremona transformation on P4

χ : (x1,x2,x3,x4,x5) 7→ (
1
x1
,

1
x2
,

1
x3
,

1
x4
,

1
x5
).
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The restriction of χ to X is a G-birational map. The image χ(X) is a singular cubic threefold.

We say that χ is the Cremona map associated with Σ. More descriptions of χ can be found in

Avilov (2016b, 2018); Cheltsov, Sarikyan, and Zhuang (2023).

Assume that XG ̸= /0. From representation theory, there are two possibilities for the G-action

on the ambient P4:

• the standard action: P4 = P(1⊕V4), where V4 is the unique irreducible 4-dimensional

representation of G,

• the nonstandard action: P4 = P(V5), where V5 is the unique irreducible 5-dimensional

representation of G.

4.2.1 The standard action

Under the standard G-action on P4, up to change of variables, we may assume that X is given

by {
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 0
}
⊂ P4

x1,...,x5

and the G-action is given by A5-permutations of 5 coordinates. There are two G-orbits of

length 5, denoted by Σ5 and Σ′
5. Let

Y1 = χ1(X), Y2 = χ
′
1(X)

where χ1 and χ ′
1 are the Cremona maps associated with Σ5 and Σ′

5. One can check by direct

computation that Y1 and Y ′
1 are cubic threefolds with 5A1-singularities. By (Cheltsov, Tschinkel,

& Zhang, 2024, Section 6), such cubics with A5-actions are unique up to isomorphism. In

particular, we may assume that Y1 = Y ′
1 = Y where Y ⊂ P4 is given by

{x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

+ x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 = 0} ⊂ P4
x1,...,x5

and the G-action is still given by permutations of coordinates.

4.2.2 The nonstandard action of A5

Up to isomorphism, we may assume that the G-action is as in (3). There is a unique G-

invariant quadric X ⊂ P4, and it is given by the equation (2). There are also two G-orbits of

length 5 in X . Let χ2 and χ ′
2 be the birational maps associated with them respectively, and

Y2 = χ2(X), Y ′
2 = χ

′
2(X).
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One can check that Y2 and Y ′
2 are cubic threefolds with 5A2-singularities. Such cubic threefolds

with A5-actions are unique up to isomorphism by (Cheltsov, Marquand, et al., 2024, Lemma

8.3). Thus, we may assume that Y = Y2 = Y ′
2 where Y is given by

Y = {(8−3ζ6) f1 +7 f2 = 0} ⊂ P4,

for

f1 = x2
1x2 + x1x2

2 +2x1x2x3 + x2
2x3 + x2x2

3 +2x2x3x4 + x2
3x4 + x3x2

4+

+ x2
1x5 +2x1x2x5 +2x1x4x5 +2x3x4x5 + x2

4x5 + x1x2
5 + x4x2

5,

f2 = x2
1x3 + x1x2

3 + x2
1x4 +2x1x2x4 + x2

2x4 +2x1x3x4 + x1x2
4 + x2x2

4+

+ x2
2x5 +2x1x3x5 +2x2x3x5 + x2

3x5 +2x2x4x5 + x2x2
5 + x3x2

5,

with the same G-action given by (3).

4.3 The standard A5-action on the quadric threefold

Throughout this section, X is the quadric given by

{
x2

1 + x2
2 + x2

3 + x2
4 + x2

5 = 0
}
⊂ P4

x1,...,x5
.

Consider the G-action on X given by natural A5-permutations of the coordinates. We denote

by Σ5 and Σ′
5 two G-orbits of length five on X . The aim of this section is to prove the following

proposition.

Proposition 4.3.1. Let MX be a non-empty mobile G-invariant linear system on X , and λ ∈Q
such that λMX ∼Q −KX . Then the log pair (X ,λMX) is canonical away from Σ5 ∪Σ′

5.

Proof. This follows from Propositions 4.3.10 and 4.3.13, and Corollary 4.3.15.

First, as a guiding principle, we observe that curves of degrees greater than 17 cannot be

non-canonical centers of (X ,λMX).

Remark 4.3.2. If a curve C is a center of non-canonical singularities of (X ,λMX), then for

two general members M1,M2 ∈ MX , we have that

λ
2(M1 ·M2) = mC+∆
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for some m> 1 and some effective divisor ∆ not supported along C. Intersecting with a general

hyperplane H on X , we obtain that

18 = λ
2(M1 ·M2 ·H)> deg(C). (4)

Later, we will see that the size of 0-dimensional non-canonical centers is less than 20, using

Nadel vanishing theorem.

We proceed with subsections. In the first subsection, we classify orbits of length less than 20

and G-irreducible curves of degrees at most 17. In the second subsection, we prove that a G-

invariant curve not contained in Q cannot be a non-canonical center of (X ,λMX), where

Q is the unique G-invariant hyperplane section on X (cf. Proposition 4.3.10). In the third

subsection, we show that points away from Q and Σ5 ∪Σ′
5 cannot be non-canonical centers

(cf. Proposition 4.3.13). In the fourth subsection, using the G-equivariant α-invariant, we prove

that no point or curve in Q is a non-canonical center (cf. Corollary 4.3.15).

4.3.1 Small G-orbits and G-invariant curves of low degrees

Lemma 4.3.3. A G-orbit of points in X with length < 20 is one of the following:

Σ5 = the orbit of [1 : 1 : 1 : 2ζ4 : 1],

Σ
′
5 = the orbit of [1 : 1 : 1 : −2ζ4 : 1],

Σ10 = the orbit of [1 : 1 :
ζ4
√

6
2

:
ζ4
√

6
2

: 1],

Σ
′
10 = the orbit of [1 : 1 : −ζ4

√
6

2
: −ζ4

√
6

2
: 1],

Σ12 = the orbit of [1 : ζ5 : ζ
2
5 : ζ

3
5 : ζ

4
5 ],

Σ
′
12 = the orbit of [1 : ζ

2
5 : ζ

4
5 : ζ5 : ζ

3
5 ],

where the length of each orbit is indicated by the subscript.

Proof. This comes from a computation of fixed points by each subgroup of G.

Lemma 4.3.4. Every G-invariant curve C in X with deg(C)≤ 17 has a trivial generic stabilizer,

that is, the G-orbit of a general point in C has length 60.

Proof. By computation, we find that all irreducible curves in X with a non-trivial generic

stabilizer are conics whose G-orbits have length 10 or 15, and thus their degrees exceed

17.

There is a distinguished G-invariant hyperplane section of X given by

Q = {x1 + x2 + x3 + x4 + x5 = 0}∩X .
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Note that Q = P1 ×P1 and that G acts on Q via two non-isomorphic G-actions on each copy

of P1. Moreover, we have

Σ5,Σ
′
5,Σ10,Σ

′
10 ̸∈ Q, Σ12,Σ

′
12 ∈ Q.

Let B6 be the G-invariant smooth curve of degree 6 given by
x1 + x2 + x3 + x4 + x5 = 0,

x2
1 + x2

2 + x2
3 + x2

4 + x2
5 = 0,

x3
1 + x3

2 + x3
3 + x3

4 + x3
5 = 0.

(5)

It is known as the Bring curve and has genus 4, see (Cheltsov & Shramov, 2016b, Re-

mark 5.4.2).

Lemma 4.3.5. Let C be a G-invariant reducible curve in X such that 10 < deg(C)≤ 17. Then

C is the union of curves in one of the following G-orbits:

• one of the following 2 orbits of 6 conics

C6 = orbit of C1, C ′
6 = orbit of C2,

where

C1 = {x1 − x3 +(−ζ
6
20 +ζ

4
20 +1)x4 +(ζ 6

20 −ζ
4
20 −1)x5 =

= x2 +(ζ 6
20 −ζ

4
20 −1)x3 +(−ζ

6
20 +ζ

4
20 +1)x4 − x5 = 0}∩X ,

C2 = {x1 − x3 +(ζ 6
20 −ζ

4
20)x4 +(−ζ

6
20 +ζ

4
20)x5 =

= x2 +(−ζ
6
20 +ζ

4
20)x3 +(ζ 6

20 −ζ
4
20)x4 − x5 = 0}∩X .

• one of the following 2 orbits of 12 lines

L12 = the orbit of the line {x1 +ζ5x4 +(ζ 3
5 +ζ5 +1)x5 = x2+

+(ζ 3
5 +1)x4 +(ζ 2

5 +1)x5 = x3 − (ζ 3
5 +ζ5)x4 +ζ

4
5 x5 = 0},

L ′
12 = the orbit of the line {x1 +ζ

2
5 x4 +(ζ 2

5 +ζ5 +1)x5 = x2+

+(ζ5 +1)x4 − (ζ 3
5 +ζ

2
5 +ζ5)x5 = x3 − (ζ 2

5 +ζ5)x4 +ζ
3
5 x5 = 0}.

Each of the orbits above consists of pairwise disjoint components. The orbits L12 and L ′
12

are contained in Q. The orbits C6 and C ′
6 are not.
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Proof. From indices of strict subgroups of G, we find that deg(C) = 12 or 15. If deg(C) = 15,

then C is a union of 5 twisted cubics. Each of the twisted cubic receives a generically free

A4-action and spans a P3. The A4-action on P3 should have two invariant lines. We check

that this does not happen for the given A4-action in our case. So this case is impossible.

If deg(C) = 12, then C is either a union of 6 conics or 12 lines. If C contains a conic, the plane

spanned by the conic is left invariant by a subgroup D5 ⊂ G. We check that the unique (up to

conjugation) D5 in G leaves invariant two planes in P4, giving rise to C6 and C ′
6. If C consists

of 12 lines, each line is left invariant by some subgroup C5 ⊂G, and thus contains two C5-fixed

points. Then, a computation of C5-fixed points leads us to L12 and L ′
12.

Lemma 4.3.6. Let C be a G-invariant curve in X with deg(C) ⩽ 10. Then C is contained in

Q = P1 ×P1, and is one of the following:

• a smooth irreducible curve of bidegree (1,7) and genus 0,

• a smooth irreducible curve of bidegree (2,6) and genus 5,

• the Bring curve B6 of bidegree (3,3) and genus 4,

• a smooth irreducible curve of bidegree (4,4) of genus 9,

• a union of 5 conics of bidegree (5,5).

Proof. Assume that C is not contained in Q. Then Q ·C = deg(C) and Q∩C consists of a

G-orbit of points in Q of length deg(C). From the information of orbits in Lemma 4.3.3, we see

that deg(C) ≥ 12. Thus, the curve C is contained in Q. A computation of G-invariant divisors

in Q of bidegree (r1,r2) with r1 + r2 ≤ 10 completes the proof.

Now, we want to classify the G-invariant irreducible curves of degrees at most 17 which are

not contained in Q. The strategy is that for each such curve C, we find a G-invariant K3

surface containing C and use the geometry of the K3 surface to proceed. In particular, we are

interested in the pencil P consisting of G-invariant K3 surfaces on X given by

Sa1,a2 := {a1 f 3 +a2g = 0}∩X , [a1 : a2] ∈ P1

where

f =
5

∑
i=1

xi and g =
5

∑
i=1

x3
i .

Note that the base locus of P is the Bring curve B6. We can find singular members in P by

direct computations.

Lemma 4.3.7. A surface Sa1,a2 in P is reduced and singular if and only if one of the following

holds:

• [a1 : a2] = [4±3ζ4 : 50] ∈ P1. In these cases, Sing(Sa1,a2) consists of 5 nodes.

• [a1 : a2] = [6±ζ4
√

3/2 : 75] ∈ P1. In these cases, Sing(Sa1,a2) consists of 10 nodes.
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Moreover, when Sa1,a2 is smooth, it does not contain Σ5,Σ
′
5,Σ10 or Σ′

10.

Remark 4.3.8. The orbits C6 and C ′
6 are contained in S2,25 ∈ P .

Lemma 4.3.9. Let C be an G-invariant curve not contained in Q such that deg(C)⩽ 17. Then

the following statements hold.

1. deg(C) = 12.

2. In the pencil P , there is a unique surface S containing C.

3. If C is irreducible, then C is a Cartier divisor on S.

4. The surface S is smooth.

5. The curve C is smooth.

6. If C is irreducible, then its genus g(C) ∈ {0,5,10}.

7. There exists a G-invariant curve C′ different from C such that C′ ⊂ S, C′ is isomorphic

to C, and C+C′ ∼Q OS(4).

Proof. We may assume that C is G-irreducible.

1. Arguing as in Lemma 4.3.6, we know that deg(C) = 12.

2. Let P be a general point on C. There exists a unique S ∈P such that P ∈ S. If the curve

C is not contained in S, then the number of points in C∩S is at most 3deg(C) = 36. But

by Lemma 4.3.4, the G-orbit of P has length 60. By contradiction, we see that C ⊂ S.

3. In what follows, we will denote by H a general hyperplane section on X , and by HS its

restriction to S. If the curve C is contained in the smooth locus of S, then it is Cartier.

Assume that C∩Sing(S) is not empty. Let f : S̃ → S be the blowup of C∩Sing(S), and

C̃ the strict transform of C by f . We have

C̃ ∼Q f ∗(C)−mE, m ∈ 1
2
Z,

where E is the exceptional divisor of f . To show that C is Cartier, it suffices to prove

that m is an integer. Denoting by EP the component of E mapped to P, we have C̃ ·EP =

2m. But this intersection number is preserved by the action of the stabilizer of P. By

Lemma 4.3.7, we have s = |C ∩Sing(S)| ∈ {5,10}. If s = 5, the stabilizer of P is A4,

and 2m = 4a+6b+12c, where a,b,c ∈Z≥0, since 4,6, and 12 are the possible lengths

of A4-orbits on P1. It follows that m is an integer, and C is Cartier. If s = 10, then the

stabilizer of P is S3, and 2m = 2a+3b+6c. If b = 0, then m is an integer and we are

done. Assume that b ≥ 1. We have

C̃2 = ( f ∗(C)−mE)2 =C2 −2sm2 ≤C2 −35.

By Hodge index theorem, we have

C2 ≤ (C ·HS)
2

(HS)2 = 24, and C̃2 ≤−11,
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which is impossible and we obtain a contradiction.

4. If C is reducible, the assertion follows from Remark 4.3.8. Assume that C is irreducible.

From (Cheltsov & Shramov, 2016a, Proposition 6.7.3), we know that rk(PicG(S)) =1 or

2, and S is smooth in the latter case. Assume that S is singular, then PicG(S) = Z and

it is generated by HS since (HS)
2 = 6 is not a square. It follows that C ∼ nHS, for some

positive integer n. Note that deg(C) = 12 implies that n = 2. But one can check that all

G-invariant quadratic forms on P4 are linear combinations of ∑
5
i=1 x2

i and (∑5
i=1 xi)

2. We

deduce that no G-invariant curve in S is linearly equivalent to 2HS, hence we obtain a

contradiction.

5. If C is reducible, the assertion follows from Lemma 4.3.5. Assume that C is irreducible

and singular, the singular locus of C is a union of G-orbits. Since S is smooth, the curve

C does not contain any orbit of length ≤10, by Lemma 4.3.3. Hence, Sing(C) must be

an orbit of length at least 12. Let us show that this is impossible. Again, Hodge index

theorem gives

C2 ≤ (C ·HS)
2

(HS)2 = 24.

If this is an equality, then C ∼ nHS, for some n ∈ Z, and we have proved that this is

impossible. So we have C2 < 24, and since the self-intersection of a curve on a K3

surface is even, we get C2 ≤ 22. It follows that the arithmetic genus pa(C) of C satisfies

C2 = 2pa(C)− 2, i.e., pa(C) ≤ 12. Thus, C cannot have more than 12 singular points.

If C has 12 singular points, since all orbits of length 12 are in Q, we have 12 = Q ·C ≥
2 ·12 = 24, which is a contradiction.

6. We have proved that pa(C)≤ 12 and that C is smooth, so its genus g(C)≤ 12. Note that

C only contains one orbit of length 12 since C ·Q = 12. Using a classification of genera

of smooth irreducible curves with A5-actions and their orbit structures, for example in

(Cheltsov & Shramov, 2016a, Lemma 5.1.5), we deduce that g(C) ∈ {0,5,10}.

7. Consider the action of S5 given by the permutations of the coordinates leaving X and S

invariant. By Cheltsov, Sarikyan, and Zhuang (2023), there is no S5-invariant irreducible

curve of degree 12 not contained in Q. Let C′ be the other curve in the S5-orbit of C.

Since C+C′ is of degree 24 and since PicS5(S) = Z ·HS, we get C+C′ ∼ 4HS.

4.3.2 Invariant curves not contained in Q

This subsection is devoted to proving the following.

Proposition 4.3.10. If C is a G-invariant curve in X not contained in Q, then each irreducible

component of C is not a non-canonical center of (X ,λMX).

Proof. This follows from Lemmas 4.3.11 and 4.3.12.
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We start with the case of irreducible curves. The method of the proof will be applied several

times in this paper.

Lemma 4.3.11. If C is an irreducible G-invariant curve not contained in Q, then C is not a

non-canonical center of (X ,λMX).

Proof. By Lemma 4.3.9, the curve C is of degree 12, and there exists a unique smooth K3

surface S in the pencil P such that C ⊂ S, and the genus g = g(C) ∈ {0,5,10}. Let H be a

general hyperplane section on X , and HS its restriction to S. Assume that C is a non-canonical

center of (X ,λMX). Then multC(λMX)> 1. We have

λMX |S ∼Q mC+∆, m ≥ multC(λMX)> 1

for some divisor ∆ on S not supported along C. In particular, the divisors

3HS −C ∼Q ∆+(m−1)C and 3HS −mC ∼Q ∆

are effective. By Lemma 4.3.9, there exists an irreducible curve C′ such that C′ is isomorphic

to C and C′ ∼Q 4HS −C.

1. Assume that g = 0. We have (C′)2 = (4HS −C)2 =−2. So the divisor 4HS −C is on an

extremal ray of the Mori cone of S. Since HS is ample, it implies that C′−HS ∼Q 3HS−C

is not rationally equivalent to any effective divisor. Hence, we get a contradiction.

2. Assume that g = 5. Notice that C′ is nef since it is an irreducible curve on a smooth

surface, and (C′)2 = 2g(C′)−2 = 8. But

(3HS −C) ·C′ = (3HS −C) · (4HS −C) =−4 < 0,

which gives a contradiction.

3. Assume that g = 10. Let us first show that the linear system |3HS−C| has no fixed part.

Notice that its mobile part is at least a pencil. Indeed, by Riemann-Roch theorem, we

have

h0(3HS −C)≥ 2+
1
2
(3HS −C)2 = 2.

So, if it has a base curve, it is of degree lower than 6. But there is no such G-invariant

curve not contained in Q. The linear system |3HS −C| also does not have any fixed

point. Indeed, we have (3HS −C)2 = 0, so the curves in this linear system are disjoint.

Hence, there is no base curve in |3HS −C| other than C and it is nef. But (3HS −C) ·
(3H −mC)< 0, which yields a contradiction.

We exclude reducible curves in a similar way.
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Lemma 4.3.12. If C is a reducible G-invariant curve of degree 12 not contained in Q, then

each irreducible component of C is not a non-canonical center of (X ,λMX).

Proof. By Lemma 4.3.5, C is the union of one of the two orbits C6 and C ′
6 of 6 conics.

Note that C6 and C ′
6 are exchanged by the S5-permutation action. Without loss of generality,

assume that C is the union of conics in C6 and components of C are non-canonical centers

of (X ,λMX). Let C′ be the union of conics in C ′
6. By Remark 4.3.8, C∪C′ is contained in the

smooth K3 surface S = S2,25 ∈ P under the notation of Lemma 4.3.7. Let HS be a general

hyperplane on S. Similarly as in Lemma 4.3.11, we know that

3HS −mC

is an effective divisor for some m > 1. Using equations, we find that C+C′ ∼Q 4HS. Note that

C′ is on the border of the Mori cone of S, since it is the disjoint union of six conics where

each of them has self-intersection −2. So C′−HS ∼Q 3HS −C is not pseudo-effective, which

contradicts the effectiveness of 3HS −mC.

4.3.3 Points outside Q

Lemma 4.3.13. Let P ∈ X and Σ be its G-orbit. If P /∈ Q and |Σ| ̸= 5, then P is not a center of

non-canonical singularities of (X ,λMX).

Proof. Assume that P is a non-canonical center of (X ,λMX). We consider two cases:

Case 1: When |Σ| ≥ 20. Remark 1.6.11 implies that (X , 3
2 λMX) is not log-canonical at P. Let

Λ be the non-log-canonical locus of (X , 3
2 λMX), and Λ0 its zero-dimensional component.

Assume that a G-invariant curve C is contained in Λ. Consider two general elements M1,M2 ∈
MX , we have that

9
4

λ
2(M1 ·M2) = mC+∆, m ≥ (multC(

3
2

λMX))
2

for an effective divisor ∆ whose support does not contain C. Intersecting with a general

hyperplane section H on X , we obtain that

81
2

= H · 9
4

λ
2(M1 ·M2)≥ mdeg(C).

By Theorem 1.6.8, we know that m > 4 and it follows that

deg(C)≤ 10.

Lemma 4.3.6 implies that C ⊂ Q. By assumption, we have Σ ̸⊂ Q. Therefore, we know that

Σ ⊂ Λ0.



4.3. The standard A5-action on the quadric threefold 86

Let I = I (X , 3
2 λMX) be the multiplier ideal sheaf of 3

2 λMX on X . Note that

KX +
3
2
MX +

1
2
OX(1)∼Q OX(2).

Then, by Nadel vanishing theorem (cf. Theorem 1.6.12), we know that h1(X ,I ⊗OX(2)) = 0

and it follows that

20 ≤ |Σ| ≤ |Supp(I )| ≤ h0(OX(2)) = 14,

which is a contradiction.

Case 2: When |Σ|< 20, then by the classification of orbits we know that |Σ|= 10. This case is

excluded by (Cheltsov, Sarikyan, & Zhuang, 2023, Proof of Proposition 3.4). The proof there

applies verbatim.

4.3.4 Points inside Q

Here we finish the proof of Proposition 4.3.1 by finding the G-equivariant α-invariant of Q.

Lemma 4.3.14. One has αG(Q) = 3
2 .

Proof. By Lemma 4.3.6, we see that the Bring curve B6 of bidegree (3,3) is the G-invariant

divisor in Q with the least degree. By definition of the α-invariant, we have αG(Q)≤ 3
2 . Assume

that αG(Q)< 3
2 . Then there exists a G-invariant effective Q-divisor D on S such that

D ∼Q OQ(3,3)

and (Q,D) is not log-canonical. Let Λ be the non-log-canonical locus of (Q,D). Assume that Λ

contains a curve C ⊂Q. We have D=mC+∆ where m> 1 and ∆ is an effective divisor whose

support does not contain C. Intersecting with a general hyperplane section H, we obtain

6 = H ·D ≥ mdeg(C).

It follows that deg(C)< 6. By Lemma 4.3.6, such curves do not exist.

Thus, Λ is 0-dimensional. We have |Λ| ≥ 12 since orbits of length 5 and 10 are not in Q. Let

ε ∈ Q>0 such that (Q,(1− ε)D) is not klt at points in Λ, and I the multiplier ideal sheaf of

(1− ε)D. Note that

KQ +(1− ε)D+3εOQ(1,1)∼Q OQ(1,1).

Applying Nadel vanishing theorem (cf. Theorem 1.6.12), we obtain

12 ≤ |Supp(I )| ≤ h0(OQ(1,1)) = 4,

which is absurd. So we obtain a contradiction and αG(Q) = 3
2 .
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Corollary 4.3.15. Let Z be a non-canonical center of the pair (X ,λMX), then Z ̸⊂ Q.

Proof. If Z is contained in Q, then by inversion of adjunction, Z is a non-log-canonical center

of (Q,λMX |Q), which contradicts Lemma 4.3.14.

4.4 The standard A5-action on the cubic threefold

In this section, we study the cubic threefold Y ⊂ P4
x1,...,x4

given by

x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

+ x2x3x4 + x2x3x5 + x2x4x5 + x3x4x5 = 0

with the same G =A5-action through permutations of coordinates. Note that Sing(Y ) consists

of 5 nodes. The aim of this section is to prove the following result.

Proposition 4.4.1. Let MY be a non-empty mobile G-invariant linear system on Y , and let

µ ∈Q such that µMY ∼Q −KY . Then the log pair (Y,µMY ) is canonical away from Sing(Y ).

Proof. This follows from Propositions 4.4.6 and 4.4.7, and Corollary 4.4.9.

Remark 4.4.2. If a curve C is a center of non-canonical singularities, then for any two general

members M1,M2 ∈ MY , we have that

λ
2(M1 ·M2) = mC+∆

for some m> 1 and some effective divisor ∆ not supported along C. Intersecting with a general

hyperplane H, we obtain that

12 = λ
2(M1 ·M2 ·H)> deg(C). (6)

Thus, we need to consider G-orbits of lengths less than 20 and G-invariant curves of degrees

lower than 12. As in the previous section, we split into subsections according to whether or not

a potential non-canonical center of (Y,µMY ) belongs to the G-invariant hyperplane section.

4.4.1 Small G-orbits and G-invariant curves of low degrees

We begin with identifying small G-orbits and G-invariant curves of low degrees in Y .
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Lemma 4.4.3. A G-orbit of points in Y with length < 20 is one of the following:

Σ
1
5 = the orbit of [1 : 0 : 0 : 0 : 0],

Σ
2
5 = the orbit of [−2 : 3 : 3 : 3 : 3],

Σ
1
10 = the orbit of [1 : 1 : 0 : 0 : 0],

Σ
2
10 = the orbit of [1 : −1 : 0 : 0 : 0],

Σ
3
10 = the orbit of [−6−2

√
6 : −6−2

√
6 : 6 : 6 : 6],

Σ
4
10 = the orbit of [−6+2

√
6 : −6+2

√
6 : 6 : 6 : 6],

Σ
1
12 = the orbit of [1 : ζ5 : ζ

2
5 : ζ

3
5 : ζ

4
5 ],

Σ
2
12 = the orbit of [1 : ζ

2
5 : ζ

4
5 : ζ5 : ζ

3
5 ],

Σ15 = the orbit of [0 : −1 : −1 : 1 : 1],

where the length of each orbit is indicated by the subscript.

With the notation above, Sing(Y ) = Σ1
5. There is a unique G-invariant hyperplane section in Y ,

given by

R := {x1 + x2 + x3 + x4 + x5 = 0}∩Y.

Note that R is the Clebsch cubic surface. One can check that

Σ
2
10,Σ

1
12,Σ

2
12,Σ15 ∈ R, Σ

1
5,Σ

2
5,Σ

1
10,Σ

3
10,Σ

4
10 ̸∈ R. (7)

We recall some facts about the A5-equivariant geometry of R, see (Cheltsov & Shramov,

2016b, Section 6.3) for more details. The surface R is G-linearizable. Indeed, there are two

unions L6,L′
6 of 6 pairwise disjoint lines in R. Respective contractions of L6 and L′

6 give two

G-birational maps π,π ′ : R → P2. There is a unique G-invariant conic in P2. We denote its

strict transforms under π and π ′ by C6 and C′
6 respectively.

Lemma 4.4.4. Let C be a G-invariant curve in Y with deg(C)< 10. Then C ⊂ R, deg(C) = 6,

and C is one of the following

L6,L′
6,C6,C′

6, or the Bring curve B6 defined by (5).

Proof. If C ̸⊂ R, then C ·R = deg(C)< 10. By (7), we know that this is impossible. Thus C ⊂ R.

The rest of the lemma follows from (Cheltsov & Shramov, 2016b, Theorem 6.3.18).

Lemma 4.4.5. Let C be a G-invariant curve in Y , of degree 10 and not contained in R. Then

C is the union of 10 lines in the G-orbit of

{x3 = x4 = x5 = 0} ⊂ Y.

Moreover, these lines are the lines that pass through pairs of points in the singular locus of Y .
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Proof. We may assume that C is G-irreducible. When C is an irreducible curve, by computa-

tion, we check that there is no G-invariant irreducible curve with a generic stabilizer. So G acts

faithfully on C. Note that C ·R = deg(C) = 10. By (7), we see that C∩R = Σ2
10 where all 10

points are smooth points of C. The stabilizer of a point in C∩R is S3, which is a contradiction,

since it should act faithfully in the tangent space of C at this point. It follows that C is a reducible

curve.

So C can be 5 conics or 10 lines. Assume that C consists of 5 conics. Each conic spans a

plane in P4, left invariant by A4 ⊂ G. Each such plane intersects X along the conic and a

residual line. Therefore, we obtain a G-orbit of 5 lines. One can check that there is no such

orbit of lines in X . Similarly, we find that there is only one G-orbit of 10 lines, as is given in the

assertion.

4.4.2 Invariant curves not contained in R

With the classification of G-irreducible invariant curves, we exclude curves not contained in R

as non-canonical centers in this case.

Proposition 4.4.6. Let C be a G-invariant curve in Y not contained in R. Then each irreducible

component of C is not a non-canonical center of the pair (Y,µMY ).

Proof. Assume that the irreducible components of C are non-canonical centers. By Remark

4.4.2, we have deg(C)< 12. From (7), we see that

deg(C) = 10

and C is the union of 10 lines given in Lemma 4.4.5. This is impossible by (Cheltsov, Sarikyan,

& Zhuang, 2023, Proof of Proposition 3.5).

4.4.3 Points outside R

Proposition 4.4.7. Let P be a point outside R, and Σ its G-orbit. If Σ ̸= Σ1
5, then P is not a

non-canonical center of (Y,µMY ).

Proof. Assume that P is a non-canoncial center of (Y,µMY ). By Remark 1.6.11, we know

that P is a non-log-canonical center of (Y, 3
2 µMY ). Let ε be a positive rational number such

that

Σ ⊂ Ω, Ω := Nklt(Y,(
3
2
− ε)µMY )

where Ω is the non-klt locus of (Y,(3
2 − ε)µMY ).
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Assume that there is a curve C ⊂ Ω. Let M1,M2 ∈ (3
2 − ε)µMY and H a general hyperplane

section of Y . Similarly as before, we have

27 ≥ H · (3
2
− ε)2

µ
2(M1 ·M2)≥ mdeg(C)> 4deg(C)

for some number m > 4 by Theorem 1.6.8. Lemma 4.4.4 implies that deg(C) = 6 and C ⊂ R.

This shows that every curve in Ω is in R. It follows that the 0-dimensional component Ω0 of Ω

is non-empty since P ̸∈ R. In particular, Ω0 ⊃ Σ. Observe that

KY +(
3
2
− ε)µMY +2εOY (1)∼Q OY (1).

Let I be the multiplier ideal sheaf of (3
2 − ε)µMY . By Nadel vanishing theorem (Theorem

1.6.12), we have h1(I ⊗OY (1)) = 0. This implies that

|Ω0| ≤ h0(OY (1)) = 5.

It follows that Ω0 = Σ = Σ1
5 or Σ2

5. The latter is impossible by (Cheltsov, Sarikyan, & Zhuang,

2023, Proposition 3.5).

4.4.4 Points inside R

Similarly as in the previous section, it suffices to find the G-equivariant α-invariant of R.

Lemma 4.4.8. One has αG(R) = 2.

Proof. Note that B6 ⊂ R is a G-invariant effective divisor such that B6 ∼Q −2KR. It follows

that αG(R) ≤ 2. Suppose that αG(R) < 2. Then there exists a G-invariant effective Q-divisor

D ∼Q −2KR such that (R,D) is not log-canonical. Let Λ be the non-log-canonical locus of

(R,D). Let ε ∈Q>0 such that the non-klt locus Ω of (R,(1− ε)D) contains Λ. Assume that Ω

contains some curve C′, then

(1− ε)D = mC′+∆, m ≥ 1

for some effective 1-cycle ∆ whose support does not contain C′. Intersecting with a general

hyperplane section H on R, we obtain

6 > H · (1− ε)D = H · (mC′+∆)≥ deg(C′),

which is impossible by Lemma 4.4.4.
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Thus, Ω consists of finitely many points. Let n = |Λ| and I be the multiplier ideal sheaf of

(1− ε)µMR. Observe that

KR +(1− ε)D+2εOR(1)∼Q OR(1).

By Nadel vanishing theorem, we know that h1(OR(1)⊗I ) = 0 and

n = |Λ| ≤ |Ω| ≤ h0(OR(1)) = 4,

which implies that n = 0 since there is no G-orbit of length ≤ 4 in R.

Corollary 4.4.9. Let Z be a non-canonical center of the pair (Y,µMY ), then Z ̸⊂ R.

Proof. Assume that Z is contained in R. By inversion of adjunction, the pair (R,µMX |R) is not

log-canonical, which contradicts Lemma 4.4.8.

4.5 The nonstandard A5-action on the quadric threefold

In this section, we study the non-standard A5-action. Let G=A5 acting on the smooth quadric

threefold given by

X =

{
∑

1≤i≤ j≤5
xix j = 0

}
⊂ P4 (8)

with the G-action generated by

(x) 7→ (x4,x1,x5,x2,−x1 − x2 − x3 − x4 − x5),

(x) 7→ (x4,−x1 − x2 − x3 − x4 − x5,x1,x3,x2). (9)

The aim of this section is to prove the following result.

Proposition 4.5.1. Let MX be a non-empty mobile G-invariant linear system on X , and λ ∈Q
such that λMX ∼Q −KX . Let Z be a G-irreducible subvariety whose components are centers

of non-canonical singularities of (X ,λMX). Then Z is one of the following:

• the union of 5 points in the orbit Σ5 or Σ′
5 given in Lemma 4.5.3,

• the rational curve C4 or C′
4 of degree 4 given by (12),

• the rational curve C8 or C′
8 of degree 8 described in Remark 4.5.16,

• (possibly) a smooth irreducible curve of degree 10 and genus 6.

Proof. This follows from Proposition 4.5.6 and Proposition 4.5.22.

Remark 4.5.2. Equations of C4,C′
4,C8,C′

8 can be found in Pinardin and Zhang (2025a). Sarkisov

links centered at these curves are presented in later subsections. We do not know the exist-

ence of the curve of degree 10. This is not necessary for our main result, see Lemma 4.5.13.
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Note that the G-action on the ambient P4 arises from the unique 5-dimensional irreducible

linear representation of G. The nature of this action creates more challenges for our classific-

ations since there are more possibilities of G-invariant curves and non-canonical centers, cf.

Proposition 4.3.1. The A5-equivariant geometry of K3 surfaces turns out to be crucial to our

analysis in this section.

First, we classify G-orbits of lengths less than 20, and the G-irreducible invariant curves

of degrees at most 17. In the second subsection, we will study the singularities of pairs

(X ,λMX) along G-invariant curves, and in the third subsection, we will study them along

G-orbits.

4.5.1 Small G-orbits and G-invariant curves of low degrees

Lemma 4.5.3. A G-orbit of points in X with length < 20 is one of the following:

Σ5 = the orbit of [1 : ζ6 −1 : −ζ6 : ζ6 −1 : 1],

Σ
′
5 = the orbit of [1 : −ζ6 : ζ6 −1 : −ζ6 : 1],

Σ12 = the orbit of [ζ 3
5 : ζ

2
5 : 0 : ζ5 : 1],

Σ
′
12 = the orbit of [ζ 4

5 : ζ5 : 0 : ζ
3
5 : 1],

where the length of each orbit is indicated by the subscript.

Lemma 4.5.4. Let C be a G-invariant curve in X with deg(C)≤ 17. Then C has trivial generic

stabilizer, i.e, the G-orbit of a general point in C has length 60.

Proof. By direct computation, one sees that the only irreducible curves in X with non-trivial

generic stabilizers are lines and conics, and their G-orbits have lengths 20 and 15 respectively.

Lemma 4.5.5. Let C be a G-invariant reducible curve of degree at most 17. Then C is the

union of curves in one of the following orbits:

• an orbit of 5 conics

C5 = orbit of {x1 + x4 = x2 + x3 = 0}∩X ,

• one of the following 2 orbits of 6 conics

C6 = orbit of C1, C ′
6 = orbit of C2,

where

a = ζ5 +ζ
4
5 ,

C1 = {x1 − x3 −a(x4 − x5) = x2 +a(x3 − x4)− x5 = 0}∩X ,
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C2 = {x1 − x3 +(1+a)(x4 − x5) = x2 − (1+a)(x3 − x4)− x5 = 0}∩X ,

• one of the following 2 orbits of 12 lines

L12 = the orbit of {
5

∑
i=1

xi =
5

∑
i=1

ζ
i−1
5 xi =

5

∑
i=1

ζ
3(i−1)
5 xi = 0},

L ′
12 = the orbit of {

5

∑
i=1

xi =
5

∑
i=1

ζ
i−1
5 xixi =

5

∑
i=1

ζ
2(i−1)
5 xi = 0}.

Each of the orbits above consists of pairwise disjoint curves.

Proof. The proof is similar to that of Lemma 4.3.5.

4.5.2 Invariant curves

Similarly as in Section 4.3 (see Remark 4.3.2), if a curve C is in the non-canonical center of

(X ,λMX), we have

deg(C)≤ 17.

The main result of this subsection is:

Proposition 4.5.6. Let MX be a non-empty mobile G-invariant linear system on X , and λ ∈Q
such that λMX ∼Q −KX . If a curve C is a non-canonical center of (X ,λMX), then C is an

irreducible curve of degree 4,8, or 10, and is one of the curves described in Proposition 4.5.1.

Proof. We explain how the results in this subsection show the assertion. Lemma 4.5.17 shows

that if C is contained in certain surfaces R or R′ explicitly given by (11), then deg(C) = 4. When

C is not in R or R′, Lemma 4.5.9 shows deg(C) ∈ {8,10,12,16}. Lemma 4.5.11 excludes the

case deg(C) = 12. Lemmas 4.5.12 and 4.5.19 show that deg(C) = 16 is also impossible.

Then Lemmas 4.5.13, 4.5.15, 4.5.17 and 4.5.18 prove that all such curves are among those

described in Proposition 4.5.1.

First, we present curves of degree 4. Consider the pencil consisting of G-invariant cubics in

P4 given by

{a1 f1 +a2 f2 = 0} ⊂ P4
x1,...,x5

, [a1 : a2] ∈ P1

where

f1 = x2
1x2 + x1x2

2 +2x1x2x3 + x2
2x3 + x2x2

3 +2x2x3x4 + x2
3x4 + x3x2

4+

+ x2
1x5 +2x1x2x5 +2x1x4x5 +2x3x4x5 + x2

4x5 + x1x2
5 + x4x2

5, (10)
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f2 = x2
1x3 + x1x2

3 + x2
1x4 +2x1x2x4 + x2

2x4 +2x1x3x4 + x1x2
4 + x2x2

4+

+ x2
2x5 +2x1x3x5 +2x2x3x5 + x2

3x5 +2x2x4x5 + x2x2
5 + x3x2

5.

In particular, there are two G-invariant chordal cubics in P4, i.e., the cubic threefold whose sin-

gular locus is a twisted quartic curve. Their intersections with X are two non-normal surfaces,

given by

R = {(−ζ
3
5 −ζ

2
5 +1) f1 + f2 = 0}∩X , (11)

R′ = {(ζ 3
5 +ζ

2
5 +2) f1 + f2 = 0}∩X .

Their intersection R∩R′ is an irreducible curve whose singular locus is Σ12 ∪Σ′
12. Let

C4 = Sing(R), C′
4 = Sing(R′). (12)

Then C4 and C′
4 are quartic rational normal curves such that

Σ12 ∈C4 \C′
4, Σ

′
12 ∈C′

4 \C4.

These two curves can be non-canonical centers of (X ,λMX). Sarkisov links centered at

them are involutions on X , presented in Lemma 4.5.15. Now, let P be the pencil consisting

of G-invariant K3 surfaces Sa1,a2 in X given by

Sa1,a2 := {a1 f1 +a2 f2 = 0}∩X , [a1 : a2] ∈ P1. (13)

Remark 4.5.7. Each of the orbits in Lemma 4.5.5 is contained in a unique member in P . We

record
orbit a1 a2

C5 1 1

C6 63(ζ 3
5 +ζ 2

5 )+145 89

C ′
6 63(ζ 3

5 +ζ 2
5 )+145 89

L12 −ζ 3
5 −ζ 2

5 +1 1

L ′
12 ζ 3

5 +ζ 2
5 +2 1

where each orbit in the first column is contained in Sa1,a2 ∈ P for a1,a2 indicated in the same

row.

Lemma 4.5.8. A surface Sa1,a2 ∈ P is singular if and only if

1. [a1 : a2] = [−3ζ6 +8 : 7], Sing(Sa1,a2) = Σ5,

2. [a1 : a2] = [3ζ6 +5 : 7], Sing(Sa1,a2) = Σ′
5,

3. [a1 : a2] = [−ζ 3
5 −ζ 2

5 +1 : 1], Sing(Sa1,a2) =C4, Sa1,a2 = R,

4. [a1 : a2] = [ζ 3
5 +ζ 2

5 +2 : 1], Sing(Sa1,a2) =C′
4, Sa1,a2 = R′.

Moreover, when Sa1,a2 ∈ P is smooth, it contains no orbit of length 5.
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Proof. First, we consider the case when S = Sa1,a2 is normal. The singular locus Sing(Sa1,a2)

forms a G-invariant set. Note that KS ∼ 0. If S has non-du Val singularities, it has at least 12

of them, since the smallest orbit on X has length 12. This is impossible. Thus, S has at worst

du Val singularities and its minimal resolution is a smooth K3 surface, whose Picard rank is

bounded by 20. Then |Sing(Sa1,a2)| < 20 and Sing(Sa1,a2) consists of orbits in Lemma 4.5.3.

One can check that the four cases in the assertion are the only possible cases. Note that

being singular along Σ12 or Σ′
12 forces Sa1,a2 to be non-normal.

Now assume that S = Sa1,a2 is singular along a curve Z. Let S′ be a general member of P .

Recall that S′ ∩ S is an irreducible curve whose singular locus is Σ12 ∪ Σ′
12. It follows that

/0 ̸= Z ∩S ⊂ Σ12 ∪Σ′
12 and the only possible cases are S = R or R′.

Lemma 4.5.9. Let C be a G-invariant curve not contained in R∪R′ such that deg(C) ≤ 17.

Then the following assertions hold.

1. We have deg(C) ∈ {8,10,12,16}.

2. The irreducible components of C are pairwise disjoint.

3. In the pencil P , there exists a unique surface S containing C.

4. If C is irreducible, then C is a Cartier divisor on S.

5. The surface S is smooth.

6. If deg(C) ̸= 16, then C is smooth.

7. If deg(C) ̸= 16 and C is irreducible, then its genus satisfies

g(C) =

0 if deg(C) = 8 or 12,

6 if deg(C) = 10.

Proof. We may assume that C is G-irreducible.

1. Since C is not contained in R, we have C ·R = 3deg(C) ≤ 51, and C ∩R splits into

G-orbits. Hence,

C ·R = 12a+20b+30c = 3deg(C)≤ 51, a,b,c ∈ Z≥0.

If a > 0, since R is singular at Σ12, we have 2 ≤ a ≤ 4 and b = c = 0. Then deg(C) ∈
{8,12,16}. If a = 0, then b = 0 and c = 1. In this case, deg(C) = 10.

2. This is obvious if C is irreducible. When C is reducible, the assertion follows from the

classification in Lemma 4.5.5.

3. Let P be a general point of C. There exists a unique surface S in P that passes through

P. The intersection S∩C contains the orbit of P, which has length 60 by Lemma 4.5.4.

If C is not contained in S, we have that C · S = 3deg(C) ∈ {24,30,36,48}, which is a

contradiction. Therefore C ⊂ S.
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4. Assume that C ∩ Sing(S) ̸= /0, otherwise C is Cartier. Let f : S̃ → S be the blowup of

C ∩ Sing(S). Denoting by C̃ the strict transform of the curve C by f , we have C̃ ∼Q

f ∗(C)−mE for some m ∈ 1
2Z, where E is the exceptional divisor of f . Consider a point

P ∈ C ∩ Sing(S), and a component EP of E mapped to P. We have C̃ ·EP = 2m. By

assumption, we have S ̸= R and R′. Lemma 4.5.8 implies that |C∩Sing(S)|= 5 and the

stabilizer of P is A4, which acts faithfully on EP = P1. It follows that 2m = 4a+6b+12c,

for some non-negative integers a,b,c, because the possible lengths of A4-orbits on P1

are 4,6, and 12. Hence m is an integer, and C is Cartier.

5. When C is reducible, this follows from Remark 4.5.7. We assume that C is irredu-

cible. The proof is similar to that of Lemma 4.3.9. Assume that S is singular, then

rk(PicG(S)) = 1. Let H be a general hyperplane section on X , and HS its restriction

to S. Since deg(HS) = 6 is not a square, we know that PicG(S) is generated by HS. Note

that C ∈ PicG(S) because C is Cartier. It follows that C ∼ nHS for some integer n. We

know that deg(C) =C ·HS = 6n, which implies that deg(C) = 12 and n = 2. Recall that

the only G-invariant quadric hypersurface in P4 is X . So there is no G-invariant curve

linear equivalent to 2HS and we obtain a contradiction.

6. When C is reducible, this follows from Lemma 4.5.5. We assume that C is irreducible

and singular. Let C̃ be a minimal resolution of singularities of C. Since S is smooth, then

by Lemma 4.5.8, we know that S does not contain an orbit of length 5. We get

g(C) = g(C̃) = pa(C̃) = pa(C)−12a−20b−30c−60d,

where a,b,c,d are non-negative integers which are not all 0, g(C) is the geometric

genus, and pa(C) is the arithmetic genus of C. Hodge index theorem gives

C2 ≤ (C ·HS)
2

(HS)2 . (14)

If this is an equality, then C ∼ nHS, for some n ∈ Z, and we have proved above that this

is impossible. So (14) is a strict inequality, i.e.,

C2 ≤


10 if deg(C) = 8,

16 if deg(C) = 10,

22 if deg(C) = 12.

Recall that pa(C) = C2+2
2 . We obtain that

pa(C)≤


6 if deg(C) = 8,

9 if deg(C) = 10,

12 if deg(C) = 12.

(15)
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Then, the only possibility is a = 1,b = c = 0 and

deg(C) = 12, pa(C) = 12, g(C) = 0.

In this case, we have C ·B = 36, where B = R∩R′ is an irreducible curve of degree 18.

On the other hand, since both C and B are singular at a common orbit of length 12, we

have C ·B ≥ 12 ·4 = 48. We obtain a contradiction. So C is smooth.

7. We know that C is smooth, and we have the bound (15) on its genus. First, when

deg(C) = 8, we find all such curves in Lemma 4.5.18 and it follows that g(C) = 0. When

deg(C) = 10, recall that C contains no orbit of length 12. Then by (Cheltsov & Shramov,

2016b, Lemma 5.1.5), or by searching through the database of curves with A5-actions

in LMFDB Collaboration (2025), we find that g(C) = 6. Finally, if deg(C) = 12, similarly

going through the classification, we get g(C) = 0.

First, we exclude several curves as possible non-canonical centers.

Lemma 4.5.10. Let C be a G-invariant union of r conics not contained in R or R′, with r ∈
{5,6}. Then each irreducible component of C is not a center of non-canonical singularities of

(X ,λMX).

Proof. By Lemma 4.5.9, there exists a unique smooth K3 surface S in the pencil P containing

C. Let HS be a general hyperplane section of S and m=multC(λMX). Assume that irreducible

components of C are non-canonical centers. Then m > 1, and we have

λMX |S ∼Q mC+∆, m ≥ multC(λMX)> 1

for some effective divisor ∆ on S not supported along C. It follows that the divisor

3HS −C ∼Q ∆+(m−1)C

is effective. On the other hand, consider the divisor on S given by

D = (r−1)HS −C.

The equations of C are given in Lemma 4.5.5. By computation, we check that the linear

subsystem in |OX(r−1)| consisting of surfaces passing through C does not contain any base

curve other than C. It follows that D is nef. However, we compute

D · (3HS −C) =

−8 if r = 5,

−18 if r = 6,
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which gives a contradiction.

Lemma 4.5.11. Let C be a G-invariant curve of degree 12 not contained in R or R′. Then each

irreducible component of C is not a center of non-canonical singularities of (X ,λMX).

Proof. If C is reducible, it is a union of 6 conics by Lemma 4.5.5. The assertion follows from

Lemma 4.5.10. We assume that C is irreducible.

By Lemma 4.5.9, the curve C is rational, and there exists a smooth K3 surface S in the pencil

P containing C. Let HS be a general hyperplane section on S. We have (4HS −C)2 = −2,

and Riemann-Roch theorem gives h0(4HS −C) ≥ 1. Assume that it is an equality. Then the

only element of |4HS −C| is the class of a G-invariant curve C′ of degree 12. If C′ is reducible,

by Lemma 4.5.5, C′ is either a union of 12 lines or 6 conics. None of these is possible: the 12

lines are contained in R or R′; and C′2 = −12 if C′ is a union of 6 conics. It follows that C′ is

irreducible, in which case we can exclude C′ as a non-canonical center the same way as in

the proof of Lemma 4.3.11.

Assume now that h0(4HS−C)> 1. We show that this is impossible. The linear system |4HS−
C| splits into a fixed part F and a mobile part G . But (4HS −C)2 = −2, so |4HS −C| is not

nef. We deduce that F is not empty. Let F ∈ F . The degree of F is 8 or 10. The latter case

would imply that curves in G have degree 2, i.e., there is a pencial of rational curves in S,

which is impossible on K3 surfaces. Assume that deg(F) = 8. Then the degree of a general

member M ∈ G is four. Either M is a smooth elliptic curve or M is rational. Again, the latter is

impossible on K3 surfaces. So M is a smooth elliptic curve. Consider the matrix

A =

 H2
S HS ·F HS ·M

F ·HS F2 F ·M
M ·HS M ·F M2

 .

Since PicG(S) is of rank at most two by (Cheltsov & Shramov, 2016a, Proposition 6.7.3), the

determinant of A must be zero. But we get

det(A) = det

6 8 4

8 −2 7

4 7 0

= 186,

hence we obtain a contradiction.

We turn to G-invariant curves of degree 16, which are necessarily irreducible. The strategy of

the proof is similar, but such curves may be singular. We first treat smooth curves here. The

case of singular curves will be excluded at the end of this subsection, where we explicitly find

all such curves in equations.



4.5. The nonstandard A5-action on the quadric threefold 99

Lemma 4.5.12. Let C be a smooth irreducible G-invariant curve of degree 16 in X that is not

contained in R∪R′. Then C is not a non-canonical center of (X ,λMX).

Proof. Let S be the unique smooth K3 surface in P containing C, and HS a general hyper-

plane section on S. Similarly as in Lemma 4.5.11, we know that 3HS −C is effective and we

seek for a contradiction by finding a nef divisor on S intersecting 3HS −C negatively.

The Hodge index theorem implies that

C2 ≤ (C ·HS)
2

(HS)2 =
128
3

=⇒ C2 ≤ 42, g ≤ 22,

where g = g(C) is the genus of C. Possible genera of smooth irreducible curves with A5-

actions and their orbit structures are classified in (Cheltsov & Shramov, 2016b, Lemma 5.1.5).

Recall from the proof of Lemma 4.5.5 that C contains at least one G-orbit of length 12. By

(Cheltsov & Shramov, 2016b, Lemma 5.1.5), we find that

g ∈ {0,4,5,9,10,13,15,19,20},

so C2 = 2g−2 ∈ {−2,6,8,16,18,24,28,36,38}. Put

n =


4 if g ∈ {19,20},

5 if g ∈ {9,10,13,15},

6 if g ∈ {0,4,5}.

One can check that (nHS −C)2 ≥ 0, and

(nHS −C) · (3HS −C) = 2n−48+C2 < 0.

Therefore, if nHS −C is nef, we are done. Now let us show that nHS −C is nef for all possible

genera.

Assume that nHS−C is not nef. By Riemann-Roch, (nHS−C)2 ≥ 0 implies that h0(nHS−C)≥
2. So |nHS −C| has a mobile part. Moreover, since nHS −C is not nef, |nHS −C| has a G-

irreducible fixed component F such that deg(F) ≤ deg(nHS −C). The curves in the mobile

part cannot be rational because S is a K3 surface, and thus their degree is at least 4. It follows

that

deg(F)≤ deg(nHS −C)−4 =


4 if g ∈ {19,20},

10 if g ∈ {9,10,13,15},

16 if g ∈ {0,4,5}.
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Lemma 4.5.9 also implies that deg(F) ∈ {8,10,12,16}. This immediately excludes the pos-

sibility g ∈ {19,20}. In the other two cases, since rkPicG(S) ⩽ 2, the intersection matrix of

F,HS and C is degenerate. In particular, let x = F ·C, we have

det

 F2 x deg(F)

x C2 16

deg(F) 16 6

= 0, (16)

which gives a quadratic equation in x. We show that this equation does not have integer

solutions satisfying the geometric conditions. Since F is a fixed component, we know that

h0(F) = 1, and by Riemann-Roch, F2 < 0. Hence, if F is irreducible, then, by adjunction

formula, we have F2 =−2. When F is reducible, F2 is supplied by Lemma 4.5.5. In particular,

we have

F2 =


−12 if deg(F) = 12 and F is reducible,

−10 if deg(F) = 10 and F is reducible,

−2 if F is irreducible,

Now, running through all possibilities, we find that (16) has an integer solution only in the

following two cases:

1. n = 6, deg(F) = 16, F2 =−2, C2 =−2, C ·F =−2,

2. n = 5, deg(F) = 10, F2 =−10, C2 = 16, C ·F = 0.

So, in the first case, we have C = F , and in the second case, C is a union of 5 conics. In

both cases, we know that the linear system |nH −C−F | is not empty since it has the same

mobile part as |nH−C|. One can compute that (nH−C−F)2 < 0, implying that |nH−C−F |
has a fixed component of degree 4, which is impossible. We obtain a contradiction, and this

completes the proof.

Now we turn to irreducible curves of degree 8 or 10. Such curves can indeed be non-canonical

centers. We characterize the Sarkisov links arising from them. The following result will allow

us to prove in Section 4.7 that up to some G-birational self-map of X which normalizes the

image of G in Aut(X), the pair (X ,λMX) is canonical away from Σ5 ∪Σ′
5.

Lemma 4.5.13. Let Z be a G-invariant smooth irreducible curve Z not contained in R∪R′, of

degree 8 and genus 0, or of degree 10 and genus 6. Assume that Z is a non-canonical center

of (X ,λMX). Let ϕ : X̃ →X be the blowup of Z. Then −KX̃ is big and nef. Moreover, for n≫ 0,

the linear system |n(−KX̃)| is base point free and gives a small birational map ψ : X̃ → V .
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There exists the following G-equivariant commutative diagram

X̃
χ //

ϕ

��

ψ

��

X̃ ′

ψ ′

��

ϕ ′

��
X

δ

33V X ′

(17)

where

1. χ is a composition of flops,

2. ψ ′ is also a small birational map,

3. ϕ ′ is a KX̃ ′-negative extremal contraction,

4. X ′ is also a smooth quadric threefold, and ϕ ′ is the blowup of a curve Z′ ⊂ X ′ of the

same degree and genus as Z,

5. X and X ′ are G-isomorphic, i.e. the birational map δ normalizes the image of G in

Aut(X).

Proof. First, we introduce some notation. Let g(Z) be the genus of Z, E the exceptional divisor

of ϕ , H a general hyperplane section on X , and H̃ the pullback of H to X̃ . Let S be the unique

K3 surface in P containing Z, S̃ its strict transform on X̃ , and HS the restriction of H to S. Note

that S̃ ≃ S since S is smooth.

To show that −KX̃ is big, we compute

(−KX̃)
3 = (3H̃ −E)3 = 2g(Z)−6 ·deg(C)+52 = 4 > 0.

To show that −KX̃ is nef, it suffices to show that |3HS−Z| contains no other base curve than Z,

i.e., 3HS −Z is nef. Indeed, if −KX̃ is not nef, then the divisor −KX̃ |S̃ = (3H̃ −E)|S̃ = 3HS −Z

is also not nef.

Let us first do this when Z is a rational curve of degree 8. By Riemann-Roch, h0(3HS −Z) =

2+ (3HS−Z)2

2 = 4, so the degree 10 linear system |3HS−Z| has a non-trivial mobile part. Hence

a fixed curve F of this linear system has degree at most 9. Lemma 4.5.9 implies that F is of

degree 8. But then the mobile part of 3HS −Z contains a pencil of rational curves, which is

impossible on K3 surfaces. We conclude that (3HS −Z) does not contain a base curve other

than Z.

Similarly, if Z has degree 10 and genus 6. Riemann-Roch theorem implies that h0(3HS−Z) =

2+ (3HS−Z)2

2 = 4, so the degree 8 linear system |3HS −Z| has a nontrivial mobile part. Hence,

a fixed curve F of this linear system is of degree at most 7. Lemma 4.5.9 implies that this is

impossible.



4.5. The nonstandard A5-action on the quadric threefold 102

We prove that −KX̃ is big and nef. Then it follows from base point free theorem that the linear

system |n(−KX̃)| is base point free for n ≫ 0, and it gives a birational map ψ : X̃ →V . Either

ψ contracts a divisor, or ψ is small. However, the former case is impossible, because we

assume that Z is a center of non-canonical singularities of (X ,λMX). If ψ contracts a divisor,

then this divisor must be a fixed component of the linear system MX , which is impossible,

since MX is mobile by assumption.

Hence, we see that ψ is a small birational contraction. Then the existence of G-equivariant

commutative diagram and (1) – (3) follow from the Sarkisov program. This is a type II Sarkisov

link. Moreover, (4) follows from matching the numerical invariants with a classification of such

links in Cutrone and Marshburn (2025); Jahnke, Peternell, and Radloff (2005, 2011). Our

cases correspond to rows 71 and 72 of Table 1 in Cutrone and Marshburn (2025). In particular,

we find X ′ is also a smooth quadric. To show (5), we notice that any other action of A5 on the

quadric X ′ has an invariant hyperplane section, which would intersect Z′ in deg(Z′) = 8 or 10

points. But, by Cheltsov and Shramov (2016a), the smallest possible orbit of A5 on a smooth

curve is of length 12, so we get a contradiction.

Remark 4.5.14. Lemma 4.5.13 shows that if such a Sarkisov link exists, it necessarily leads to

a G-isomorphic quadric and gives no new G-Mori fibre space. Remark 4.5.16 and Lemma 4.5.18

finds all curves of degree 8 satisfying the assumptions of Lemma 4.5.13. On the other hand,

we do not know the existence of such a curve of degree 10.

Finally, we show that the only curves in R or R′ which can be non-canonical centers are C4 and

C′
4. The Sarkisov links centered at them have been studied in (Araujo et al., 2023a, Section

5.9) and Malbon (2025).

Lemma 4.5.15 ((Malbon, 2025, Lemma 7)). Let H be a general hyperplane section on X .

Then the linear system |2H −C4| gives rise to a G-birational involution ϕ : X 99K X . There

exists a G-equivariant commutative diagram

X̃
ϕ̃ //

π

��

X̃

π

��
X

ϕ
// X

where π : X̃ → X is the blowup of C4, R̃ is the strict transform on X̃ of the surface R, and

ϕ̃ ∈ Aut(X̃) has order 2. Let E be the exceptional divisor of π . Then ϕ̃(E) = R̃. Moreover, one

has R̃ ≃ E ≃ P1 ×P1.

Note that X̃ above is a smooth Fano threefold of Picard rank 2 and degree 28. More details

about X̃ can be found in Malbon (2024) or (Araujo et al., 2023a, Section 5.9).
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Remark 4.5.16. Recall that there is an involution σ ∈ Aut(X) such that ⟨σ ,G⟩ ≃S5. In many

cases, G-orbits or G-invariant curves appear in pairs swapped by σ . For example, σ swaps

C4 and C′
4. By symmetry, |2H −C′

4| gives an involution ϕ ′ similar to ϕ . We construct ϕ and ϕ ′

in equations and find that ϕ(C′
4) and ϕ ′(C4) are two smooth irreducible curves of degree 8.

Each curve is cut out by cubics passing through it. We also find that ϕ ′(ϕ(C′
4)) and ϕ(ϕ ′(C4))

are irreducible curves of degree 16 such that each of them has 12 cusps. Equations of ϕ,ϕ ′

and the curves can be found in Pinardin and Zhang (2025a).

Lemma 4.5.17. Let C be a G-invariant curve of degree at most 17 contained in R or R′ and

C ̸=C4,C′
4. Then each irreducible component of C is not a center of non-canonical singularities

of (X ,λMX).

Proof. Without loss of generality, we may assume that C ⊂R. Suppose that multC(λMX)> 1.

Let us seek for a contradiction. We use the notation of Lemma 4.5.15. Set H̃ = π∗(H), let MX̃

be the strict transform on X̃ of the linear system MX , and C̃ the strict transform on X̃ of the

curve C. Then

R̃ ∼ 2H̃ −3E, H̃ ·C̃ ≤ 17, C̃ ̸⊂ E, and multC̃(λMX̃)> 1,

where

λMX̃ ∼Q 3H̃ − rE

for some r ∈ Q⩾0. By Lemma 4.5.15, there is an involution ϕ̃ ∈ Aut(X̃) such that ϕ̃(R̃) = E

and

ϕ̃
∗(H̃)∼ 2H̃ −E.

In particular, we know that R̃ ≃ P1 ×P1. Moreover, we have R̃|E = 2∆, where ∆ is a smooth

curve in E of bidegree (1,1). This implies that the G-action on E is diagonal.

To obtain a contradiction, we consider the restriction

λMX̃ |R̃ ∼Q (3H̃ − rE)|R̃

and show that the inequality multC̃(λMX̃ |R̃)> 1 contradicts

H̃ ·C̃ ≤ 17,

since C̃ ̸= ∆. To do this, we restrict ϕ̃(MX̃) to E.

Namely, set M ′
X̃
= ϕ̃(MX̃) and C̃′ = ϕ̃(C̃). Then (2H̃ −E) ·C̃′ ≤ 17, C̃′ ̸= ∆ and

multC̃′(λM ′
X̃)> 1,
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where

λM ′
X̃ ∼Q 3(2H̃ −E)− rR̃.

Let f be a fibre of the natural projection π|E : E →C4, and s a section of this projection such

that s2 = 0. Then

C̃′ ∼ as+b f

for some non-negative integers a and b. We have

(as+b f ) · (2H̃ −E)|E = (2H̃ −E) ·C̃′ ≤ 17. (18)

We compute 2H̃|E ∼ 8 f and E|E = s− 5 f , so (2H̃ −E)|E ∼ s+ 3 f . Plugging this into (18),

we get

3a+b ≤ 17.

Since C̃′ ̸= ∆, we know that a ̸= b. A computation of G-invariant forms on E then implies that

(a,b) ∈ {(0,12),(1,11),(1,13),(2,10)}. (19)

Now, we use the inequality m := multC̃′(λM ′
X̃
)> 1. It gives

λM ′
X̃ |E = mC̃′+Ω,

where Ω is a Q-linear system on E. On the other hand, we have

λM ′
X̃ |E ∼Q 3(s+3 f )−2r(s+ f ) = (3−2r)s+(9−2r) f ,

and thus m(as+b f )+Ω ∼Q (3−2r)s+(9−2r) f . This yields

b < bm ⩽ s · (m(as+b f )+Ω) = s · ((3−2r)s+(9−2r) f ) = 9−2r ⩽ 9,

which contradicts (19). This completes the proof.

Using the geometry of X̃ , we can show that C8 and C′
8 described in Remark 4.5.16 are the

only G-invariant rational curves of degree 8 in X .

Lemma 4.5.18. Let C be a G-invariant curve of degree 4 in X . Then C = C4 or C′
4. Let C

be a G-invariant rational curve of degree 8 in X . Then C = C8 or C′
8, where C8 = ϕ(C′

4) and

C′
8 = ϕ ′(C4).

Proof. By Lemma 4.5.9/(1), any G-invariant curve C of degree 4 is contained in R or R′.

Without loss of generalities, assume C ⊂ R. The first assertion then follows from the proof

of Lemma 4.5.17. In particular, no solution in (19) gives 3a+ b = 4. To show the second

assertion, recall that any G-invariant curve of degree 8 is irreducible since 8 is not a multiple
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of the index of any strict subgroup of G. By the proof of Lemma 4.5.9/(1), we know that C

contains an orbit of length 12. Assume that Σ12 ⊂C. Under the same notation as in the proof

of Lemma 4.5.17, let C̃ be the strict transform of C in X̃ . We have

C̃ · (2H̃ −E) = 2 ·8−12 = 4.

It follows that ϕ(C) is a curve of degree 4 in R′, which is necessarily C′
4. Then C = ϕ(C′

4) since

ϕ is an involution. Similarly, we can show that C = ϕ ′(C4) when Σ′
12 ∈C,

Lemma 4.5.19. Let C be a singular G-invariant curve of degree 16 that is not contained in

R∪R′. Then C = ϕ ′(C8) or C = ϕ(C′
8). Moreover, C is not a non-canonical center of the log

pair (X ,λMX).

Proof. First, we show that C is singular along an orbit of length 12. Assume it is not. Then

|Sing(C)| ≥ 20. Let S be the unique smooth K3 surface in P containing C as in Lemma 4.5.9,

and HS a general hyperplane section on S. We have C2 ≤ 42 by the Hodge index theorem, and

thus the arithmetic genus pa(C) ≤ 22. Since |Sing(C)| ≥ 20, the geometric genus g(C) ≤ 2.

By (Cheltsov & Shramov, 2016b, Lemma 5.1.5.), A5 does not act on curves of geometric

genus 1 or 2. It follows that

g(C) = 0, |Sing(C)|= pa(C) = 20, C2 = 38.

Then (C−2HS)
2 =−2. This implies that |C−2HS| is not empty and has a fixed component of

degree ≤ 4, which is impossible by Lemma 4.5.9. Thus, C is singular along an orbit of length

12. Assume that C is singular at points in Σ12. Under the same notation as in the proof of

Lemma 4.5.18, we have that

deg(ϕ(C)) = C̃ · (2H̃ −E) = 2 ·16−2 ·12− (a ·12+b ·20+ c ·30+d ·60)≥ 0

for a,b,c,d ∈ Z≥0. Then the only possibility is deg(ϕ(C)) = 8. It follows from Lemma 4.5.18

that ϕ(C) = C8 or C′
8, i.e., C = ϕ(C8) or ϕ(C′

8). The first is impossible since ϕ(C8) = C′
4

has degree 4. Thus, C = ϕ(C′
8). Similarly, if C is singular at points in Σ′

12, we can show that

C = ϕ ′(C8).

Then we can find equations of C. We listed them in Pinardin and Zhang (2025a). Using

equations, we check that |Sing(C)| = 12 and |5HS −C| contains no base curve other than

C. Then 5HS −C is nef. Since C8 and C′
8 are rational curves, we know g(C) = 0. It follows that

pa(C) = 12 and C2 = 22.

Now assume that C is a non-canonical center of (X ,λMX). Similarly as in the proof of

Lemma 4.5.12, we know that 3HS −C is effective. But computing

(5HS −C) · (3HS −C) =−16 < 0,
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we obtain a contradiction to the nefness of 5HS −C. This completes the proof.

4.5.3 Orbits of points

Now we study when all non-canonical centers are points. First, we show that points in the

invariant curves of degree 4 or 8 cannot be non-canonical centers in this case.

Lemma 4.5.20. Suppose that C4 is not a non-canonical center of the log pair (X ,λMX), then

every point in C4 is not a non-canonical center. The same holds for C′
4.

Proof. Let a = multC4(λMX). By assumption, we have a ≤ 1. We retain the notation in

Lemma 4.5.17: let π : X̃ → X be the blowup of C4, and E its exceptional divisor, so that

E = P1 ×P1 →C4. Let λMX̃ be the linear system satisfying

KX̃ +λMX̃ +(a−1)E ∼ ϕ
∗(KX +λMX).

Assume that a point on C4 is a non-canonical center of (X ,λMX). Then there exists a center

Z of non-canonical singularities of the pair

(X̃ ,λMX̃ +(a−1)E)

such that Z ⊂ E. It follows that Z is a center of non-canonical singularities of (X̃ ,λMX̃ +E).

By inversion of adjunction, Z is a non-log-canonical center of (E,λMX̃ |E). Note that λMX̃ |E
is not mobile, and consider a divisor D ∼Q λMX̃ |E . Let f be a general fibre of E →C4 and s

a section such that s2 = 0. We compute

D ∼Q as+(12−5a) f ∈ Pic(E)⊗Q.

Since a ≤ 1, we know that (E,D) is log-canonical at a general point of any curve which is not

a fibre. On the other hand, if any fibre is a non-log-canonical center of (E,D), then at least 12

fibres are non-log-canonical centers, since the smallest orbit of the A5-action on C = P1 has

length 12. This is impossible because 12−5a ≤ 12. It follows that (E,D) is not log-canonical

at finitely many points. Let p be one of these points and L a fibre containing p. Write

D ∼Q bL+∆, b ≤ 1

for some divisor ∆ not supported along L. Then (E,L+∆) is also not log-canonical at p. By

inversion of adjunction, (L,∆|L) is not log-canonical at p, which contradicts

(∆ ·L)p = a ≤ 1.
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Lemma 4.5.21. Suppose that the curves C4,C′
4,C8 and C′

8 are not centers of non-canonical

singularities of (X ,λMX), then none of the points in C4 ∪C′
4 ∪C8 ∪C′

8 is a non-canonical

center.

Proof. By Lemma 4.5.20, it suffices to show that (X ,λMX) is canonical at any point in C8

under the assumption. Let Σ be the intersection of C8 with the non-log-canonical locus of

(X ,λMX). Similarly as before, we may assume that Σ is 0-dimensional. Let M1,M2 be two

general members in MX , and write

λ
2(M1 ·M2) = mC8 +∆

for some divisor ∆ not supported along C8 and m ≥ 0. Intersecting with a general hyperplane

H, we obtain

18 = λ
2(M1 ·M2 ·H)≥ mdeg(C8) = 8m ⇒ m ≤ 9/4.

Recall that C8 is cut out by cubics, see Remark 4.5.16. Let S be a general cubic on X passing

through C8. Since C8 is smooth, by Theorem 1.6.8, we have

multΣ
(
λ

2(M1 ·M2)
)
> 4 ⇒ multΣ(∆)≥ 4−m.

Observe that

54 = λ
2(M1 ·M2 ·S) = 24m+∆ ·S ≥ 24m+ |Σ|(4−m). (20)

Since 4−m > 0, the inequality (20) implies that |Σ|< 20. By Lemma 4.5.3, Σ consists of orbits

of length 5 or 12. Orbits of length 12 are in C4 ∪C′
4, and thus are excluded by Lemma 4.5.20.

On the other hand, none of orbits of length 5 is in C8. It follows that Σ = /0.

Proposition 4.5.22. Suppose that the log pair (X ,λMX) is canonical away from finitely many

points. Then it is canonical away from Σ5 ∪Σ′
5.

Proof. Let Σ be the non-canonical locus of (X ,λMX). By Remark 1.6.11, (X , 3
2 λMX) is not

log-canonical at points in Σ. Let ε be a positive rational number such that

Σ ⊂ Ω, Ω := Nklt(X ,(
3
2
− ε)λMX).

Assume that Ω contains some curve C. Let

m = multC((
3
2
− ε)λMX).

Observe that

1 < m <
3
2

⇒ m2

m−1
>

9
2
.
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Let M1,M2 ∈ MX be two general elements, and H a general hyperplane on X . By The-

orem 1.6.10, we know that

9
2

deg(C)<
m2

m−1
deg(C)≤ (

3
2
− ε)2

λ
2(H ·M1 ·M2)<

9
4

18 =
81
2
,

which implies that deg(C) ≤ 8. It follows that C can only be one of C4,C′
4,C8 and C′

8. By

Lemma 4.5.20 and Lemma 4.5.21, Σ is disjoint from these curves. Thus, the 0-dimensional

component Ω0 of Ω is non-empty. Applying Nadel vanishing in the same way as in the proof of

Proposition 4.3.13, we obtain that |Σ| ≤ |Ω0|< 14. Since all orbits of length 12 are contained

in C4 or C′
4, the proof is complete.

4.6 The nonstandard A5-action on the cubic threefold

Now, we focus on the other model of X : a cubic threefold Y with 5A2-singularities, carrying the

same G-action generated by (9). Let f1 and f2 be the cubics defined in (10). Then Y is given

by

Y = {(8−3ζ6) f1 +7 f2 = 0} ⊂ P4 (21)

with the same G-action given by (9). The aim of this section is to prove the following result.

Proposition 4.6.1. Let MY be a non-empty mobile G-invariant linear system on Y , and µ ∈Q
such that µMY ∼Q −KY . Then the log pair (Y,µMY ) is canonical away from Sing(Y ).

Proof. This follows from Propositions 4.6.11 and 4.6.12.

First, we classify small orbits and curves of degrees at most 11. We show that all such curves

are reducible. In the second subsection, we study singularities of pairs (Y,µMY ) as above

along invariant curves, and in the third subsection, we consider 0-dimensional centers.

4.6.1 Small G-orbits and G-invariant curves of low degrees

Lemma 4.6.2. A G-orbit of points in Y with length ≤ 20 is one of the following:

Σ5 = the orbit of [1 : ζ6 −1 : −ζ6 : ζ6 −1 : 1],

Σ12 = the orbit of [ζ 3
5 : ζ

2
5 : 0 : ζ5 : 1],

Σ
′
12 = the orbit of [ζ 4

5 : ζ5 : 0 : ζ
3
5 : 1],

Σ15 = the orbit of [1 : 0 : 0 : 0 : 0],

Σ20 = the orbit of [(3ζ6 −8) : (−8ζ6 +5) : (5ζ6 +3) : 7(ζ6 −1) : 7].
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where the length of each orbit is indicated by the subscript. A G-orbit of points in Y with length

30 is the orbit of a general point in one of the following two curves:

a cuspidal cubic curve: {x1 − x4 = x2 − x3 = 0}∩Y,

or

a line: {x1 + x4 = x2 + x3 = x5 = 0} ⊂ Y.

Moreover, every G-orbit of points in Y of length different from 60 is one of the orbits described

above.

Observe that Σ5 is the singular locus of Y . We now describe the G-invariant reducible curves

of degrees lower than 12 on Y . Later, we show that they are the only G-invariant curves of

such degrees.

Lemma 4.6.3. Let C be a G-invariant reducible curve of degree at most 11. Then C is the

union of curves in one of the following orbits:

• one of the following two orbits of 6 lines

L6 = the orbit of {x1 + x4 +(−ζ
3
5 −ζ

2
5 )x5 = x2 +(ζ 3

5 +ζ
2
5 )x4+

+(ζ 3
5 +ζ

2
5 )x5 = x3 − (ζ 3

5 +ζ
2
5 )x4 + x5 = 0},

L ′
6 = the orbit of {x2 − (ζ 3

5 +ζ
2
5 +1)x4 − (ζ 3

5 +ζ
2
5 +1)x5 = x1+

+ x4 +(ζ 3
5 +ζ

2
5 +1)x5 = x3 +(ζ 3

5 +ζ
2
5 +1)x4 + x5 = 0},

• one of the following two orbits of 10 lines

L10 = the orbit of {x1 + x3 + x5 = (5ζ3 −3)x4 +7x5 =

= 7x1 +(5ζ3 −3)x2 = 0},

L ′
10 = the orbit of {x1 + x3 + x5 =−ζ3x4 + x5 = x1 −ζ3x2 = 0}.

Moreover, L ′
10 consists of ten lines passing through pairs of 5 singular points of Y . The lines

in L are pairwise disjoint for L = L6,L
′

6 or L10.

Proof. The proof is similar to that of Lemma 4.3.5.

The rest of this subsection is devoted to proving the following result.

Proposition 4.6.4. Let C be a G-invariant curve in Y of degree at most 11. Then C is the

union of all lines in one of the orbits L6, L ′
6, L10, or L ′

10 given in Lemma 4.6.3.

Proof. This follows from Lemmas 4.6.7, 4.6.8, 4.6.9, and 4.6.10.
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First we notice that there is a unique G-invariant surface in the linear system |OY (2)| and

|OY (3)|. We denote them by Q and R respectively. We have

Σ12,Σ
′
12 ∈ Q∩R, Σ5 ∈ R\Q, Σ20 ∈ Q\R. (22)

By computation, we find that Q is a nodal K3 surface.

Lemma 4.6.5. The singular locus of Q is Σ5 and each singular point is an ordinary double

point. The singular locus of R is Σ12 ∪Σ′
12 and each singular point is an ordinary double point.

Lemma 4.6.6. Let C ⊂ Y be an irreducible G-invariant curve of degree at most 11 which is

not a union of ten lines. Then Σ5 ̸⊂C.

Proof. Assume that Σ5 ⊂C. Let Ỹ be the blowup of Y in Σ5, let E be the exceptional divisor,

and C̃ be the strict transform of C. We denote by H the pullback to Ỹ of a general hyperplane

section on Y . The base locus of the linear system |4H−3E| is the strict transform of the union

of the ten lines that pass through pairs of points in Σ5. By assumption, the curve C̃ is not in

the base locus of |4H −3E|, so we have (4H −3E) ·C̃ ≥ 0. On the other hand,

0 ≤ (4H −3E) ·C̃ = 4d −15E1 ·C̃ ≤ 44−15E1 ·C̃ (23)

where E1 is an irreducible component of E. The divisor E1 is a quadric cone and is invariant

under an A4-action. Then A4 acts faithfully on the base conic of the cone. The orbit of a

smooth point in the cone is at least of length 4. It follows that if C̃ does not pass through the

vertex P of E1, we have E1 · C̃ ≥ 4, contradicting (23). If C̃ passes through P, it is singular

at P, because otherwise A4 does not act faithfully on the tangent space of C̃ at P. Hence

E1 ·C̃ ≥ 2 ·2 = 4, again contradicting (23).

Lemma 4.6.7. Let C ⊂ Y be an irreducible G-invariant curve of degree d ≤ 11. Then d ∈
{6,8,10}. Moreover, if d = 6 (resp. d = 8), then C ⊂ R (resp. C ⊂ Q).

Proof. By Lemma 4.6.6, Σ5 ̸⊂C. If C ̸⊂ Q, it follows from possible lengths of orbits that

Q ·C = 2d = 12a+20b+30c, for a,b,c ∈ Z≥0.

Since d ≤ 11, we find that

(d,a,b,c) ∈ {(6,1,0,0),(10,0,1,0)}.

Similarly, if C ̸⊂ R, we have

R ·C = 3d = 12a+20b+30c, for a,b,c ∈ Z≥0.
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Recall that R is singular at the orbits of length 12 by Lemma 4.6.5. Then a = 0 or a ≥ 2. The

only possibilities are

(d,a,b,c) ∈ {(8,2,0,0),(10,0,0,1)}.

Therefore, when d /∈ {6,8,10}, we know that C ⊂ Q∩R. But Q∩R is an irreducible curve of

degree 18.

Next, we show that there is also no irreducible G-invariant curve of degree 6, 8 or 10.

Lemma 4.6.8. Let C be a G-invariant curve of degree 6 in Y . Then C is a union of 6 lines in

L6 or L ′
6 given in Lemma 4.6.3.

Proof. Assume that C is not a union of 6 lines. By Lemma 4.6.3, C is irreducible. Lemma

4.6.7 shows that C ⊂ R. From (22), we know that Q contains both orbits of length 12. Since

C ·Q = 12, the curve C must contain one and only one orbit of length 12 and C is smooth

along this orbit. Assume that C contains Σ12. Recall from Lemma 4.6.5 that points in Σ12 are

nodes of R. Let f : R̃ → R be the blowup of R at Σ12, E its exceptional divisor, and C̃ the strict

transform of C. Then

C̃ ∼Q f ∗(C)− a
2

E,

for some positive integer a. By Hodge index theorem, we have C2 ≤ 4. It follows that

2pa(C̃)−2 = (KR̃ +C̃) ·C̃

= ( f ∗(H)+ f ∗(C)− a
2

E) ·C̃

= 6+C2 − 12a2

2
≤ 10−6a2.

We deduce that pa(C̃)≤ 6−3a2 ≤ 3. Since there is no G-orbits of length ≤ 3, the geometric

genus g(C̃) = pa(C̃), i.e., both C̃ and C are smooth and g(C)≤ 3. From (Cheltsov & Shramov,

2016b, Lemma 5.1.5), we know that C is a smooth rational curve. Then C contains a G-orbit

of length 20. On the other hand, the only G-orbit of length 20 is contained in Q by (22). This

contradicts C ·Q = 12.

Lemma 4.6.9. There is no G-invariant curve of degree 8 in Y .

Proof. Assume that C is such a curve. It is necessarily irreducible. Lemma 4.6.7 shows that

C ⊂ Q. Recall from Lemma 4.6.5 that Q is a K3 surface singular at Σ5. Hence, by (Cheltsov

& Shramov, 2016a, Proposition 6.7.3), we have PicG(Q)∼= Z. Let H be a general hyperplane

section on Q. Since H2 = 6 is not a square, we know that H generates PicG(Q). On the other

hand, Lemma 4.6.6 implies that C is contained in the smooth locus of Q, and thus is a Cartier

divisor. It follows that C = nH, for some n ∈ Z. Then 8 =C ·H = 6n, which is impossible.
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Lemma 4.6.10. Let C be a G-invariant curve of degree 10 in Y . Then C is a union of 10 lines

in L10 or L ′
10 given in Lemma 4.6.3.

Proof. Assume that C is not a union of 10 lines. By Lemma 4.6.3, C is irreducible. Consider its

normalization f : C′ →C. Since C is not contained in R∩Q, the proof of Lemma 4.6.7 shows

that C cannot have an orbit of length 12. By (Cheltsov & Shramov, 2016b, Lemma 5.1.5), we

deduce that the genus of C′ satisfies

g(C′)≥ 6.

Consider the divisor D = f ∗(OC(3)) on C′, and the restriction map

H0(Y,OY (3))−→ H0 (C,OC(3)) ,

We want to estimate h0(D) = h0(C′,OC′(D)). If D is non-special, then by Riemann–Roch:

h0(D) = degD−g+1 = 30−g+1 ≤ 25.

If D is special, then by the Clifford theorem:

h0(D)≤ degD
2

+1 = 16.

Consider the map g : H0(Y,OY (3))→ H0 (C′,OC′(D)) given as the composition of

H0(Y,OY (3))
|C−→ H0 (C,OC(3))

f ∗−→ H0 (C′,OC′(D)
)
.

Since h0(Y,OY (3)) = 34, we find that the kernel of this map has dimension at least

34−h0(D)≥ 9.

This kernel consists of cubic hypersurfaces in Y that contain C.

Arguing in the same way as in Lemma 4.6.9, we see that C cannot be contained in Q. Then

C ·Q = 20, so that C must contain Σ20. Let V15 and V20 be the subspaces of H0(Y,OY (3))

consisting of cubics containing the orbit Σ15 and Σ20 respectively. If Σ15 ⊂ C, then kerϕ ⊂
V15 ∩V20. But we compute that dim(V15 ∩V20) = 5 < 9. Hence, the curve C cannot contain

Σ15.

Since R ·C = 30, the curve C must contain an orbit of length 30 lying on R. Let Σ30 be such an

orbit, and V30 the space of cubics containing Σ30. We have explicitly described these orbits in

Lemma 4.6.2. In particular, Σ30 is either the orbit of one of the following 4 points

[−ζ4 −2 : 1 : 1 : 1 : 1], [ζ4 −2 : 1 : 1 : 1 : 1],
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[−2ζ
3
5 −2ζ

2
5 : 1 : ζ

3
5 +ζ

2
5 −1 : ζ

3
5 +ζ

2
5 −1 : 1],

[2ζ
3
5 +2ζ

2
5 +2 : 1 : −ζ

3
5 −ζ

2
5 −2 : −ζ

3
5 −ζ

2
5 −2 : 1],

or the orbit of a general point in the line

{x1 + x4 = x2 + x3 = x5 = 0} ⊂ Y.

A linear algebra computation then shows that dim(V20 ∩V30) < 9 for any such orbit Σ30.

Therefore we obtain a contradiction.

4.6.2 Invariant curves

Proposition 4.6.11. Let C be a G-invariant curve in Y . Then each irreducible component of

C is not a non-canonical center of (Y,µMY ).

Proof. Assume that irreducible components of C are non-canonical centers of (Y,µMY ).

Proposition 4.6.4 shows that C is the union of all curves in one of the following orbits given in

Lemma 4.6.3

L6, L ′
6, L10, or L ′

10.

Assume that C is one of the unions of six lines in L6 or L ′
6 which are pairwise disjoint. Let

Ỹ → Y be the blowup of C in Y , E the exceptional divisor, and H the pullback of a general

hyperplane section on Y . One can check that C is cut out by cubics, which implies that |3H −
E| is nef. By our assumption that irreducible components of C are non-canonical centers of

(Y,µMY ), we know that |2H −mE| is mobile for some m > 1, and thus |2H −E| is mobile as

well. It follows that the divisor (2H −E)2 is effective. On the other hand, we have (3H −E) ·
(2H −E)2 =−6 < 0, which is a contradiction.

If C is the union of 10 lines in L10 which are pairwise disjoint, we proceed in exactly the same

way as C is also cut out by cubics, so (4H −E) is nef and (4H −E) · (2H −E)2 = −32 < 0.

Finally, the case where C is the union of curves in L ′
10, i.e., the union of the ten lines passing

through pairs of points in Σ5, is excluded the same way as in (Cheltsov, Sarikyan, & Zhuang,

2023, Proof of Proposition 3.4).

4.6.3 Orbits of points

Proposition 4.6.12. Let P ∈ Y be a point and Σ its G-orbit. If P is a non-canonical center of

(Y,µMY ), then Σ = Σ5.

Proof. Assume that P is a non-canonical center. By Remark 1.6.11, we know that P is a

non-log-canonical center of (Y, 3
2 µMY ). Let ε be a positive rational number such that

Σ ⊂ Ω, Ω := Nklt(Y,(
3
2
− ε)µMY ).
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Assume that Ω contains a curve C. Let

m = multC((
3
2
− ε)λMX).

Observe that

1 < m <
3
2

⇒ m2

m−1
>

9
2
.

Let M1,M2 ∈MX be two general elements and H a general hyperplane section of Y . Then by

Theorem 1.6.10, we have that

27 ≥ (
3
2
− ε)2

µ
2(M1 ·M2 ·H)≥ m2

m−1
deg(C)>

9
2

deg(C),

which implies that deg(C)< 6. Proposition 4.6.4 shows that such curves do not exist. It follows

that Ω contains no curve.

Now notice that

KY +(
3
2
− ε)µMY +2εOY (1)∼Q OY (1).

Let I be the multiplier ideal sheaf of (3
2 − ε)µMY . By Nadel vanishing theorem, we have

|Ω| ≤ h0(OY (1)) = 5.

It follows that Ω = Σ = Σ5.

4.7 Proof of Theorems 4.1.1, 4.1.2 and 4.1.3

In this section, we explain how the results in Sections 4.3 to 4.6 prove Theorems 4.1.1

and 4.1.2, and can be adapted to show Theorem 4.1.3 about the nonstandard S5-action.

For the standard A5-action, the result readily follows from Cheltsov, Sarikyan, and Zhuang

(2023).

Proof of Theorem 4.1.1. By (Cheltsov, Sarikyan, & Zhuang, 2023, Section 3), this follows from

Proposition 4.3.1 and 4.4.1.

Similarly, in the case of the nonstandard A5-action, Theorem 4.1.2 follows from Proposi-

tions 4.5.1 and 4.6.1. We explain this implication in detail.
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4.7.1 Nonstandard A5-action

We introduce some notation first. Let X be the quadric given by (8), Y the cubic given by (21),

with the nonstandard G-action given by (9). We denote by Σ5 and Σ′
5 the two orbits in X of

length 5, χ and χ ′ the Cremona map associated with them respectively, and ΣY
5 the orbit of

length 5 in Y . Let BirG(X) be the group of G-birational automorphisms of X .

It is well-known (see e.g., (Cheltsov, Sarikyan, & Zhuang, 2023, Section 3), (Cheltsov &

Shramov, 2016a, Theorem 3.3.1) and Cheltsov, Dubouloz, and Kishimoto (2023); Cheltsov

and Sarikyan (2022)) that the Noether–Fano inequalities (cf. Theorem 1.6.7) imply that The-

orem 4.1.2 follows from the following result.

Theorem 4.7.1. Let MX be a non-empty mobile G-invariant linear system on X and λ ∈
Q such that λMX ∼Q −KX . Then there exists γ ∈ BirG(X) such that either (X ,λMX) or

(Y,µMY ) has canonical singularities, where MY is the proper transform of MX by χ ◦ γ , and

µMY ∼Q −KY .

First, let us explain why we need the birational automorphism γ in the theorem above. Re-

call from Section 4.5 that (X ,λMX) can have 1-dimensional non-canonical centers. Here

we show that, up to replacing MX by its strict transform under a birational automorphism,

(X ,λMX) is canonical away from the orbits of length five.

Proposition 4.7.2. Let MX be a non-empty mobile G-invariant linear system. Then there

exists γ ∈BirG(X) such that (X ,λ ′M ′
X) is canonical away from Σ5∪Σ′

5, where M ′
X = γ∗(MX),

and λ ′ ∈Q such that λ ′M ′
X ∼Q −KX .

Proof. Let λ ∈ Q such that λMX ∼Q −KX . If (X ,λMX) is canonical away from Σ5 ∪Σ′
5, we

are done. Assume on the contrary that there exists a G-irreducible subvariety Z not contained

in Σ5∪Σ′
5, and irreducible components of Z are non-canonical centers of (X ,λMX). Then, by

Proposition 4.5.1, Z is one of the following irreducible curves:

• rational curves C4 and C′
4 of degree 4 given by (12),

• rational curves C8 and C′
8 of degree 8 described in Remark 4.5.16,

• a smooth curve C10 of degree 10 and genus 6.

Moreover, it follows from Lemma 4.5.13 and Lemma 4.5.15 that there exists a commutative

G-equivariant diagram

V V ′

X X

χ

ϕ ϕ ′

δ

where

• ϕ is the blowup of Z,
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• χ is an biregular involution if deg(Z) = 4, and is a composition of flops if deg(Z) = 8 or

10,

• ϕ ′ is the blowup of a curve Z′ with the same degree and genus as Z,

• δ ∈ BirG(X).

Set M ′
X = δ∗(MX) and λ ′ ∈ Q such that λ ′M ′

X +KX ∼Q 0. Since Pic(X) is generated by

OX(1), we know that MX is a linear subsystem of |OX(n)| for n = 3
λ

. Let n′ = 3
λ ′ . Then

M ′
X ⊂ |OX(n′)|. We claim that n′ < n. Indeed, let MV be the strict transform of the linear

system MX on V . Note that codimX(Z) = 2 and multZ(λMX)> 1. We have that

0 ∼Q ϕ
∗(KX +λMX)∼Q KV +λMV +aE, for some a > 0.

Pushing forward this class to X via ϕ ◦χ , we obtain that

KX +λM ′
X +aD ∼Q 0

for some effective divisor D on X . Since KX +λ ′M ′
X ∼Q 0, it follows that λ ′ > λ , i.e., n′ < n.

To summarize, if a curve is a non-canonical center, then we can find a G-birational automorph-

ism such that the pushforward M ′
X is a subsystem of |OX(n′)| for n′ strictly smaller than n.

Therefore, by iterating this process, we will obtain a linear system which has no 1-dimensional

non-canonical center, and thus the resulting pair is canonical away from Σ5 ∪Σ′
5.

We recall the following lemma from Abban, Cheltsov, Park, and Shramov (2024).

Lemma 4.7.3. Let V be a threefold, K ⊂ Aut(V ) a finite subgroup fixing a smooth point

P ∈ V , MV a non-empty mobile K-invariant linear system on V , and λ ∈ Q such that P is a

non-canonical center of (V,λMV ) . If K acts on the Zariski tangent space TP(V ) of V at P via

an irreducible representation, then multP(MV )>
2
λ

.

Corollary 4.7.4. Assume that (X ,λMX) is not canonical at Σ5. Then multΣ5MX > 2
λ

.

Proof. The stabilizer of a point P ∈ Σ5 is isomorphic to A4, which acts on TP(X) faithfully. The

only 3-dimensional faithful representation of A4 is irreducible. Then we apply the previous

lemma.

Lemma 4.7.5. Let S = P(1,1,2), and K a finite group acting faithfully on S such that |OS(1)|
has no K-invariant curves. Then αK(S)≥ 1

2 .

Proof. Let L be a general element in |OS(1)|. Suppose αK(S) < 1
2 . Then there exists a K-

invariant effective Q-divisor D such that the log pair (S, 1
2 D) is not log-canonical, and D

satisfies

D ∼Q 4L ∼Q −KS, and
1
2

D = ∑aiCi,
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where for each i, we have ai ∈ Z≥0, and Ci ∈ |OS(di)| for some di. First, we show that ai ≤ 1

for all i. Indeed, we have 2 = deg(1
2 D) = Σaidi. If a j > 1 for some j, then a j = 2 and d j = 1.

Since |OS(1)| contains no K-invariant curve, there exists g ∈ K such that a jg(C j) also shows

up in 1
2 D. This contradicts deg(1

2 D) = 2.

Let ε ∈ Q>0 such that (S, 1−ε

2 D) is not log-canonical. Since ai ≤ 1 for all i, we know that

Γ = Nklt(S, 1−ε

2 D) does not contain any curve. Nadel vanishing theorem then implies that Γ

contains a single point, namely the vertex of S. Consider the blowup S̃ → S of the vertex and

let E be the exceptional divisor. We have that

S̃ ∼= F2, KS̃ ∼ f ∗(KS), D̃ = f ∗(D)−mE, L̃ = f ∗(L)− 1
2

E

for some m ∈ Z>0. It follows that

0 ≤ D̃ · L̃ = 2−m, and thus m
1− ε

2
< 1.

Since

f ∗(KS +
1− ε

2
D)∼Q KS̃ +

1− ε

2
D̃+m

1− ε

2
E,

we see that (S̃, 1−ε

2 D̃+m 1−ε

2 E) is not log-canonical at some point in E. Since m 1−ε

2 < 1, the

pair (S̃, 1−ε

2 D̃+E) is also not log-canonical at some point in E. By inversion of adjunction, we

see that (E, 1−ε

2 D̃|E) is not log-canonical. Note that D̃|E ∼Q −E|E is a divisor of degree 2m

on E = P1. It follows that αK(P1)< 1. Recall from Cheltsov and Shramov (2016a) that

αK(P1) =



1
2 if K ∼=Cn,

1 if K ∼=Dn,

2 if K ∼= A4,

3 if K ∼=S4,

6 if K ∼= A5.

By our assumption that |OS(1)| has no K-invariant curves, we see that K is not a cyclic group.

Therefore, we obtain a contradiction and this completes the proof.

Corollary 4.7.6. Assume that points of ΣY
5 are centers of non-canonical singularities of (Y,µMY ).

Consider π : Ỹ → Y , the blowup of Y in ΣY
5 . Let m ∈ Q such that π∗(µMY ) ∼Q µMỸ +mE,

where MỸ is the strict transform of MY to Ỹ , and E is the exceptional divisor of π . Then

m > 1.

Proof. Let P be a point of Σ5, and let F be the component of E that is mapped to P. Then

F ≃ P(1,1,2), since P is an A2-singularity. Observe that

π
∗(KY +µMY )∼Q KỸ +µMỸ +(m−1)E.
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Recall that P is a non-canonical center of (Y,µMY ). It follows that (Ỹ ,µMỸ +(m− 1)E) is

not canonical at some point in F . Hence, (Ỹ ,µMỸ +mE) is not log-canonical at some point

in F .

Now assume that m ≤ 1. Then (Ỹ ,µMỸ +E) is not log-canonical at some point in F . It follows

from the inversion of adjunction that (F,µMỸ |F) is not log-canonical. Note that

µMỸ |F ∼Q −mF |F ∼Q OF(2m). (24)

The stabilizer of P is isomorphic to A4, which acts faithfully on F . Then (24) implies that

αA4(F)< m
2 , which contradicts Lemma 4.7.5. Therefore we conclude that m > 1.

We are now ready to prove Theorem 4.7.1.

Proof of Theorem 4.7.1. By Proposition 4.7.2, we may assume that, up to applying a G-

birational automorphism of X , the log pair (X ,λMX) is canonical away from Σ5 ∪Σ′
5. Since

Σ5 and Σ′
5 are exchanged by some element in the normalizer of G in Aut(X), we can further

assume that (X ,λMX) is canonical away from Σ5. Now, it suffices show that either (X ,λMX)

is canonical along Σ5, or (Y,µMY ) is canonical along ΣY
5 .

We denote by HX (resp. HY ) a general hyperplane section on X (resp. Y ). Let n,n′ ∈ Z such

that MX ∼Q nHX , and MY ∼Q n′HY . Note that n = 3
λ

and n′ = 2
µ

. Recall from (Cheltsov,

Sarikyan, & Zhuang, 2023, Section 3) that the Cremona map χ fits into the G-equivariant

commutative diagram:

V
g

��

ρ //W
f

  
X

χ // Y

where g is the blowup of Σ5, ρ is a small birational map that flops the proper transforms of

10 conics that contain three points in Σ5, and f contracts to ΣY
5 the proper transforms of 5

hyperplane sections of X that pass through four points in Σ′
5. Let H̃X , H̃Y , M̃X , M̃Y be the

strict transforms in V of HX , HY , MX , MY respectively, E the exceptional divisor of g, and F

the strict transform in V of the exceptional divisor of f . We compute

M̃X = nH̃X −mE = (4n−5m)H̃Y − (3n−4m)F = n′H̃Y −m′F = M̃Y ,

which yields

n′ = 4n−5m, m′ = 3n−4m,

for some m,m′ ∈ Q. By Corollary 4.7.4, if (X ,λMX) is not canonical along Σ5, then λm > 2,

i.e., 3m > 2n. On the other hand, if (Y,µMY ) is not canonical at ΣY
5 , then by Corollary 4.7.6,

we have 1< µm′, i.e., 2n> 3m. These two cases cannot happen simultaneously. We conclude

that either (X ,λMX) is canonical at Σ5, or (Y,µMY ) is canonical at ΣY
5 .
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4.7.2 Nonstandard S5-action

Throughout this subsection, G′ =S5. Using our analysis of the non-standard A5-action, it is

not hard to prove Theorem 4.1.3. Let X be the same quadric threefold defined by (8) and Y the

cubic threefold defined by (21). We consider the nonstandard G′-action on X and Y generated

by the nonstandard A5-action (9), and an extra involution

ι : (x) 7→ (x3,x4,x1,x2,−x1 − x2 − x3 − x4 − x5).

We will show that the only G′-Mori fibre spaces that are G′-equivariantly birational to X are X

and Y .

Recall from Propositions 4.5.6 and 4.5.22 that the possible non-canonical centers under

the nonstandard A5-action are points in Σ5 and Σ′
5, curves C4,C′

4, C8,C′
8, or some curves of

degree 10.

Under the G′-action, the orbits Σ5 and Σ′
5 are still invariant. So, the cubic Y with 5A2-singularities

is still S5-equivariantly birational to X . Proposition 4.6.1 clearly also holds for the S5-action.

We focus on the quadric. Any curve of degree 10 becomes irrelevant, since if it is not S5-

invariant, its S5-orbit becomes a curve of degree 20, which exceeds the bound 18 as in

Remark 4.3.2.

The involution ι ∈S5 exchanges the curve C4 with C′
4, and C8 with C′

8. We show that C8 and

C′
8 are not non-canonical centers in this case.

Lemma 4.7.7. The curves C8 and C′
8 are not centers of non-canonical singularities of (X ,λMX).

Proof. Assume C8 is a non-canonical center. Since MX is G′-invariant, C′
8 is also a non-

canonical center. Put Z = C8 +C′
8. Then we have multZ(λMX) > 1. Let π : X̃ → X be the

blowup of X along Z, E the exceptional divisor, and H the pullback of a general hyperplane

section on X to X̃ . Similarly as before, the assumption that C8 and C′
8 are non-canonical

centers implies that (3H −E)2 is effective. Using equations, we check that the linear system

|OX(5)−C8 −C′
8| does not have base curves other than C8 +C′

8. It follows that (5H −E) is

nef. Let us compute the intersection number (3H −E)2 · (5H −E). We have

• H3 = 2,

• H2 ·E = 0,

• H ·E2 =−deg(C8 +C′
8) =−16,

• E3 =−deg(NC8/X)−deg(NC′
8/X) = KX · (C8 +C′

8)+4 =−44.

Then

(3H −E)2 · (5H −E) = 45H3 −39H2E +11HE2 −E3

= 90−0−176+44

=−42.
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This contradicts the fact that (5H −E) is nef.

On the other hand, C4 +C′
4 can indeed be a non-canonical center. We present the Sarkisov

link centered at C4 +C′
4. One can check that the linear system |OX(3)− (C4 +C′

4)| gives rise

to a rational map τ : X 99K P3 fitting into a G′-equivariant commutative diagram

X̃
π

��

ρ

��
X τ // P3

where π is the blowup along C4+C′
4 and the resolution ρ of τ is a double cover ramified along

a singular sextic surface. The involution of this double cover gives rise to a G′-equivariantly

birational involution

δ : X 99K X .

Note that δ naturally commutes with G′ in BirG′
(X). It follows that δ /∈ Aut(X) = PSO5(C)

since no element in Aut(X) centralizes G′. Similarly as in Lemma 4.5.13, we can show that

−KX̃ is big and nef, and that |n(−KX̃)| gives a small birational map for n ≫ 0. Namely, δ also

fits into a Sarkisov link as in (17).

Proof of Theorem 4.1.3. Note that the Sarkisov link centered at C4+C′
4 is again a G′-equivariantly

birational selfmap. Thus, Proposition 4.7.2 and Theorem 4.7.1 still hold for the G′-action.

The argument in the previous subsection applies and Theorem 4.1.3 is proved in the same

way.

Appendix: Magma code

We provide the Magma code that computes invariant curves for the non-standard action of A5

on smooth quadric threefolds.

1 K:= CyclotomicField (30);

2

3 //e30 :=259;

4 //C41 ,C42 ,C81 ,C82 ,C161 ,C162

5 G:= MatrixGroup <5, K | [

6 Matrix(SparseMatrix(K, 5, 5, [

7 <1, 2, 1>, <1, 5, -1>, <2, 4, 1>, <2, 5, -1>, <3, 5, -1>, <4,

1, 1>, <4, 5,

8 -1>, <5, 3, 1>, <5, 5, -1>])),

9 Matrix(SparseMatrix(K, 5, 5, [
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10 <1, 2, -1>, <1, 3, 1>, <2, 2, -1>, <2, 5, 1>, <3, 2, -1>, <3,

4, 1>, <4, 1,

11 1>, <4, 2, -1>, <5, 2, -1>]))

12 ]> where w := K.1 where K := CyclotomicField (30);

13

14 P4<x1,x2,x3,x4,x5 >:= ProjectiveSpace(K,4);

15 e30:= RootOfUnity (30);

16 c3:=[x1^2*x2 + x1*x2^2 + 2*x1*x2*x3 + x2^2*x3 + x2*x3^2 + 2*x2*x3

*x4 +

17 x3^2*x4 + x3*x4^2 + x1^2*x5 + 2*x1*x2*x5 + 2*x1*x4*x5

+ 2*x3*x4*x5 +

18 x4^2*x5 + x1*x5^2 + x4*x5^2,

19 x1^2*x3 + x1*x3^2 + x1^2*x4 + 2*x1*x2*x4 + x2^2*x4 + 2*x1

*x3*x4 +

20 x1*x4^2 + x2*x4^2 + x2^2*x5 + 2*x1*x3*x5 + 2*x2*x3*x5

+ x3^2*x5 +

21 2*x2*x4*x5 + x2*x5^2 + x3*x5^2];

22 e5:= RootOfUnity (5);

23 X:= Scheme(P4, x1^2 + x1*x2 + x2^2 + x1*x3 + x2*x3 + x3^2 + x1*x4

+ x2*x4 + x3*x4 + x4^2 +

24 x1*x5 + x2*x5 + x3*x5 + x4*x5 + x5^2);

25 a3:=-e30^7 + e30^3 + e30^2 + 1;

26 a4:=e30^7 - e30^3 - e30^2 + 2;

27

28 f1:=a3*c3[1]+c3[2];

29 f2:=a4*c3[1]+c3[2];

30 X:=Q;

31 X1:= Scheme(P4,f1);

32 X2:= Scheme(P4,f2);

33 C41:= SingularSubscheme(X1);

34 df1:= DefiningEquations(C41);

35 C42:= SingularSubscheme(X2);

36

37 M:=GL(5,K);

38

39

40 inv1:=map <P4->P4|

41 [

42 1/3*( e30^7 - e30^3 - e30^2 - 2)*x1^2 + 1/3*( -2* e30^7 +

43 2*e30^3 + 2*e30^2 + 1)*x1*x2 + 1/3*( -2* e30^7 + 2*e30^3 +

44 2*e30^2 + 1)*x2^2 + 1/3*( e30^7 - e30^3 - e30^2 +

45 1)*x1*x3 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x3 +

46 1/3*( e30^7 - e30^3 - e30^2 + 1)*x3^2 + 1/3*( e30^7 -

47 e30^3 - e30^2 + 1)*x1*x4 + 1/3*( e30^7 - e30^3 -
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48 e30^2 + 1)*x2*x4 + 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 +

49 1)*x3*x4 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x4^2 +

50 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1*x5 +

51 1/3*( -5* e30^7 + 5*e30^3 + 5*e30^2 + 1)*x2*x5 +

52 1/3*( e30^7 - e30^3 - e30^2 + 1)*x3*x5 + 1/3*( -2* e30^7 +

53 2*e30^3 + 2*e30^2 + 1)*x4*x5 + 1/3*( -2* e30^7 + 2*e30^3 +

54 2*e30^2 + 1)*x5^2,

55 1/3*( e30^7 - e30^3 - e30^2 - 2)*x1^2 + 1/3*(4* e30^7 -

56 4*e30^3 - 4*e30^2 - 5)*x1*x2 + 1/3*( e30^7 - e30^3 -

57 e30^2 - 2)*x2^2 + 1/3*( e30^7 - e30^3 - e30^2 - 5)*x1*x3

58 + 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 - 5)*x2*x3 +

59 1/3*( e30^7 - e30^3 - e30^2 - 2)*x3^2 + 1/3*( e30^7 -

60 e30^3 - e30^2 - 5)*x1*x4 + 1/3*( e30^7 - e30^3 -

61 e30^2 - 5)*x2*x4 + 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 -

62 5)*x3*x4 + 1/3*( e30^7 - e30^3 - e30^2 - 2)*x4^2 +

63 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 - 5)*x1*x5 + 1/3*( e30^7

64 - e30^3 - e30^2 - 5)*x2*x5 + 1/3*( e30^7 - e30^3 -

65 e30^2 - 5)*x3*x5 + 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 -

66 5)*x4*x5 + 1/3*( e30^7 - e30^3 - e30^2 - 2)*x5^2,

67 1/3*( e30^7 - e30^3 - e30^2 + 1)*x1^2 + 1/3*( -2* e30^7 +

68 2*e30^3 + 2*e30^2 + 1)*x1*x2 + 1/3*( -2* e30^7 + 2*e30^3 +

69 2*e30^2 + 1)*x2^2 + 1/3*( e30^7 - e30^3 - e30^2 +

70 1)*x1*x3 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x3 +

71 1/3*( e30^7 - e30^3 - e30^2 - 2)*x3^2 + 1/3*( e30^7 -

72 e30^3 - e30^2 + 1)*x1*x4 + 1/3*( -5* e30^7 + 5*e30^3 +

73 5*e30^2 + 1)*x2*x4 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

74 1)*x3*x4 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x4^2 +

75 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 + 1)*x1*x5 + 1/3*( e30^7

76 - e30^3 - e30^2 + 1)*x2*x5 + 1/3*( e30^7 - e30^3 -

77 e30^2 + 1)*x3*x5 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

78 1)*x4*x5 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x5^2,

79 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1^2 + 1/3*( -2* e30^7

80 + 2*e30^3 + 2*e30^2 + 1)*x1*x2 + 1/3*( e30^7 - e30^3 -

81 e30^2 + 1)*x2^2 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x1*x3

82 + 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 + 1)*x2*x3 +

83 1/3*( e30^7 - e30^3 - e30^2 + 1)*x3^2 + 1/3*( -5* e30^7 +

84 5*e30^3 + 5*e30^2 + 1)*x1*x4 + 1/3*( e30^7 - e30^3 -

85 e30^2 + 1)*x2*x4 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

86 1)*x3*x4 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x4^2 +

87 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1*x5 +

88 1/3*( e30^7 - e30^3 - e30^2 + 1)*x2*x5 + 1/3*( e30^7 -

89 e30^3 - e30^2 + 1)*x3*x5 + 1/3*( -2* e30^7 + 2*e30^3 +

90 2*e30^2 + 1)*x4*x5 + 1/3*( e30^7 - e30^3 - e30^2 -

91 2)*x5^2,
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92 1/3*( e30^7 - e30^3 - e30^2 + 1)*x1^2 + 1/3*(4* e30^7 -

93 4*e30^3 - 4*e30^2 + 1)*x1*x2 + 1/3*( e30^7 - e30^3 -

94 e30^2 + 1)*x2^2 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x1*x3

95 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x3 +

96 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x3^2 + 1/3*( e30^7

97 - e30^3 - e30^2 + 1)*x1*x4 + 1/3*( e30^7 - e30^3 -

98 e30^2 + 1)*x2*x4 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

99 1)*x3*x4 + 1/3*( e30^7 - e30^3 - e30^2 - 2)*x4^2 +

100 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1*x5 +

101 1/3*( e30^7 - e30^3 - e30^2 + 1)*x2*x5 + 1/3*( -5* e30^7 +

102 5*e30^3 + 5*e30^2 + 1)*x3*x5 + 1/3*( -2* e30^7 + 2*e30^3 +

103 2*e30^2 + 1)*x4*x5 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

104 1)*x5^2

105 ]>;

106

107

108

109 inv2:=map <P4->P4|[

110 1/3*( e30^7 - e30^3 - e30^2 - 2)*x1^2 + 1/3*( e30^7 -

111 e30^3 - e30^2 + 1)*x1*x2 + 1/3*( e30^7 - e30^3 -

112 e30^2 + 1)*x2^2 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

113 1)*x1*x3 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x2*x3 +

114 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x3^2 +

115 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1*x4 +

116 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x4 +

117 1/3*( -5* e30^7 + 5*e30^3 + 5*e30^2 + 1)*x3*x4 +

118 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x4^2 + 1/3*( e30^7

119 - e30^3 - e30^2 + 1)*x1*x5 + 1/3*(4* e30^7 - 4*e30^3 -

120 4*e30^2 + 1)*x2*x5 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

121 1)*x3*x5 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x4*x5 +

122 1/3*( e30^7 - e30^3 - e30^2 + 1)*x5^2,

123 1/3*( e30^7 - e30^3 - e30^2 - 2)*x1^2 + 1/3*( e30^7 -

124 e30^3 - e30^2 - 5)*x1*x2 + 1/3*( e30^7 - e30^3 -

125 e30^2 - 2)*x2^2 + 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 -

126 5)*x1*x3 + 1/3*( e30^7 - e30^3 - e30^2 - 5)*x2*x3 +

127 1/3*( e30^7 - e30^3 - e30^2 - 2)*x3^2 + 1/3*(4* e30^7 -

128 4*e30^3 - 4*e30^2 - 5)*x1*x4 + 1/3*(4* e30^7 - 4*e30^3 -

129 4*e30^2 - 5)*x2*x4 + 1/3*( e30^7 - e30^3 - e30^2 -

130 5)*x3*x4 + 1/3*( e30^7 - e30^3 - e30^2 - 2)*x4^2 +

131 1/3*( e30^7 - e30^3 - e30^2 - 5)*x1*x5 + 1/3*(4* e30^7 -

132 4*e30^3 - 4*e30^2 - 5)*x2*x5 + 1/3*(4* e30^7 - 4*e30^3 -

133 4*e30^2 - 5)*x3*x5 + 1/3*( e30^7 - e30^3 - e30^2 -

134 5)*x4*x5 + 1/3*( e30^7 - e30^3 - e30^2 - 2)*x5^2,

135 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1^2 + 1/3*( e30^7 -
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136 e30^3 - e30^2 + 1)*x1*x2 + 1/3*( e30^7 - e30^3 -

137 e30^2 + 1)*x2^2 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

138 1)*x1*x3 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x2*x3 +

139 1/3*( e30^7 - e30^3 - e30^2 - 2)*x3^2 + 1/3*( -2* e30^7 +

140 2*e30^3 + 2*e30^2 + 1)*x1*x4 + 1/3*(4* e30^7 - 4*e30^3 -

141 4*e30^2 + 1)*x2*x4 + 1/3*( e30^7 - e30^3 - e30^2 +

142 1)*x3*x4 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x4^2 +

143 1/3*( -5* e30^7 + 5*e30^3 + 5*e30^2 + 1)*x1*x5 +

144 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x5 +

145 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x3*x5 +

146 1/3*( e30^7 - e30^3 - e30^2 + 1)*x4*x5 + 1/3*( -2* e30^7 +

147 2*e30^3 + 2*e30^2 + 1)*x5^2,

148 1/3*( e30^7 - e30^3 - e30^2 + 1)*x1^2 + 1/3*( e30^7 -

149 e30^3 - e30^2 + 1)*x1*x2 + 1/3*( -2* e30^7 + 2*e30^3 +

150 2*e30^2 + 1)*x2^2 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 +

151 1)*x1*x3 + 1/3*( -5* e30^7 + 5*e30^3 + 5*e30^2 + 1)*x2*x3 +

152 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x3^2 +

153 1/3*(4* e30^7 - 4*e30^3 - 4*e30^2 + 1)*x1*x4 +

154 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x4 +

155 1/3*( e30^7 - e30^3 - e30^2 + 1)*x3*x4 + 1/3*( e30^7 -

156 e30^3 - e30^2 + 1)*x4^2 + 1/3*( e30^7 - e30^3 - e30^2

157 + 1)*x1*x5 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x2*x5

+

158 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x3*x5 +

159 1/3*( e30^7 - e30^3 - e30^2 + 1)*x4*x5 + 1/3*( e30^7 -

160 e30^3 - e30^2 - 2)*x5^2,

161 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2 + 1)*x1^2 + 1/3*( -5* e30^7

162 + 5*e30^3 + 5*e30^2 + 1)*x1*x2 + 1/3*( -2* e30^7 + 2*e30^3

163 + 2*e30^2 + 1)*x2^2 + 1/3*( -2* e30^7 + 2*e30^3 + 2*e30^2

164 + 1)*x1*x3 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x2*x3 +

165 1/3*( e30^7 - e30^3 - e30^2 + 1)*x3^2 + 1/3*( -2* e30^7 +

166 2*e30^3 + 2*e30^2 + 1)*x1*x4 + 1/3*( -2* e30^7 + 2*e30^3 +

167 2*e30^2 + 1)*x2*x4 + 1/3*( e30^7 - e30^3 - e30^2 +

168 1)*x3*x4 + 1/3*( e30^7 - e30^3 - e30^2 - 2)*x4^2 +

169 1/3*( e30^7 - e30^3 - e30^2 + 1)*x1*x5 + 1/3*( -2* e30^7 +

170 2*e30^3 + 2*e30^2 + 1)*x2*x5 + 1/3*(4* e30^7 - 4*e30^3 -

171 4*e30^2 + 1)*x3*x5 + 1/3*( e30^7 - e30^3 - e30^2 +

172 1)*x4*x5 + 1/3*( e30^7 - e30^3 - e30^2 + 1)*x5^2

173 ]>;

174

175 C81:=inv1(C42);

176 [Degree(C81)];

177 C82:=inv2(C41);

178 [Degree(C82)];
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179

180 C161:=inv2(C81);

181 [Degree(C161)];

182

183 C162:=inv1(C82);

184 [Degree(C162)];

185

186 extrainv := Matrix(K

,5,5,[0,0,1,0,-1,0,0,0,1,-1,1,0,0,0,-1,0,1,0,0,-1,0,0,0,0,-1])

;

187 nG:=sub <M|G,extrainv >;



Chapter 5

Finite abelian groups acting on

rationally connected threefolds:

groups of K3 type

"I maths cool bas lezm neshrab may."

Line Kerbage

We study finite abelian groups acting on three-dimensional rationally connected varieties. We

concentrate on groups of K3 type, that is, abelian extensions of groups that faithfully act on

a K3 surface by a cyclic group. In particular, if a finite abelian group faithfully acts on a GQ-

Fano threefold while preserving a K3 surface (with at worst du Val singularities), then it is of

K3 type. We prove a classification theorem for the groups of K3 type which can act on three-

dimensional rationally connected varieties. The results presented in this chapter have been

obtained in collaboration with Konstantin Loginov and Zhijia Zhang, see Loginov et al. (2025).

All authors have approved the inclusion of this work in the present thesis and acknowledge

equal contribution.
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5.1 Introduction

By Bir(X) we denote the group of birational automorphisms of an algebraic variety X . We deal

with the classification problem of finite subgroups in Bir(X) when X is a rationally connected

variety. More specifically, we are most interested in finite subgroups of the Cremona group.

Recall that the Cremona group is defined as Crn(C) =Bir(Pn). The classification of finite sub-

groups of Cr2(C) was obtained in Dolgachev and Iskovskikh (2009). As for finite subgroups of

Cr3(C), the complete classification seems to be out of reach. There exist results concerning

some classes of finite groups, see Y. Prokhorov (2012) in the case of simple groups.

In this paper, we concentrate on finite abelian subgroups of Bir(X) when X is a rationally

connected variety. The case of Cr1(C) = PGL(2,C) is elementary, see Proposition 6. The

classification of finite abelian subgroups in Cr2(C) was obtained in Blanc (2007), see Theorem

10. The study of finite abelian subgroups in the case of Cr3(C) was initiated in Loginov (2024).

In arbitrary dimension, there exists the following result.

Theorem 1 ((Kollár & Zhuang, 2024, Corollary 11)). Let X be a rationally connected variety

of dimension n, and let G ⊂ Bir(X) be a finite abelian p-group. Then G can be generated by

r elements where

r ≤ pn
p−1

≤ 2n.

The bound in Theorem 1 in dimension n = 2 was obtained in Beauville (2007), it also follows

from Blanc (2007) and Dolgachev and Iskovskikh (2009); in dimension n = 3 it was obtained

in a series of works, see Y. Prokhorov (2011), Y. Prokhorov (2014), Y. Prokhorov and Shramov

(2018), Kuznetsova (2020), Xu (2020), Loginov (2022). They use explicit methods of the

minimal model program.

To deal with the case n = 3, the following definitions were introduced in Loginov (2024). A

finite abelian group G is called a group of product type, if G = G1 ×G2 where Gi ⊂ Cri(C). In

particular, G is isomorphic to a subgroup in

Cr1(C)×Cr2(C)⊂ Cr3(C).

Using the classification of finite abelian subgroups of Cri(C) for i = 1,2, see Proposition 6 and

Theorem 10, it is not hard to write down the complete list of groups of product type, see Table

1 in Section 5.2.3.

We say that a finite abelian group G is of K3 type, if G is an abelian extension of a finite

abelian group H that faithfully acts on a K3 surface, by a cyclic group:

0 → Zm → G → H → 0. (2)
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In particular, if a finite abelian group faithfully acts on a three-dimensional variety while pre-

serving a K3 surface (with at worst du Val singularities), then it is of K3 type.

Theorem 3 ((Loginov, 2022, Theorem 1.7)). Let X be a rationally connected variety of dimen-

sion 3, and let G ⊂ Bir(X) be a finite abelian group. Then

1. either G is of product type,

2. or G is of K3 type,

3. or G faithfully acts on a GQ-Fano threefold X ′ with | − KX ′ | = /0 such that X ′ is G-

birational to X . Moreover, any GQ-Mori fiber space with a faithful action of G is a GQ-

Fano threefold with empty anti-canonical system.

Three cases in Theorem 3 are not mutually exclusive. It is known that if a finite abelian group

that faithfully acts on a rationally connected threefold preserving a rational curve, a rational

surface, or a structure of a Mori fiber space with a non-trivial base, then such a group is

of product type, see (Loginov, 2024, Corollary 3.14, Corollary 3.17). Essentially, this follows

from a purely algebraic result on abelian extensions of finite abelian groups, see Proposition

7. It is also known that if a finite abelian group that faithfully acts on a threefold with terminal

singularities has a (smooth or singular) fixed point then it is of product type, see Theorem 32.

However, not all finite abelian groups that can faithfully act on a rationally connected threefold

are of product type.

In (Loginov, 2022, Corollary 1.10) it is proven that there are only finitely many isomorphism

classes of finite abelian groups of K3 type which faithfully act on a rationally connected

threefold. This result follows from two boundedness results. First, there are only finitely many

isomorphism classes of finite groups that can faithfully act on a K3 surface, see Brandhorst

and Hofmann (2023) for the complete classification. This bounds H in the exact sequence in

(2). The second result, which is needed to bound m in (2), is the boundedness of the indices

of Fano threefolds with canonical singularities. Of course, this follows from the boundedness

of Fano threefolds with canonical singularities. However, it is effectively known only in the case

of isolated canonical singularities, in which case it is equal to 61, see Jiang and Liu (2025). In

the case of non-isolated canonical singularities, there exists a bound 228614400, see (Birkar,

2019, Lemma 2.3). It seems far from being sharp. Hence the main problem in dealing with

groups of K3 type that act on rationally connected threefolds is to bound the number m in (2)

for each group H that can faithfully act on a K3 surface. It turns out that this number indeed

can be effectively bounded.

The main result of our work is as follows.

Theorem 4. Let X be a rationally connected variety of dimension 3, and let G ⊂ Bir(X) be a

finite abelian group. Then either G is of product type, or of type (3) as in Theorem 3, or G is

isomorphic to one of the following groups:

1. Z4
4,
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2. Z3
6 ×Z2,

3. Z2
6 ×Z2

3,

4. Z2
8 ×Z4 ×Z2.

All the cases in Theorem 4 are realized as shown in Example 3. It is expected that there are

no groups of the third type in Theorem 3 which are not of product type or of K3 type, see

(Loginov, 2024, Conjecture 1.8). If this conjecture is true, then the list of group of product type

((Loginov, 2024, Table 1)) together with Theorem 4 provide the complete list of finite abelian

groups that can act on a rationally connected variety of dimension 3.

Corollary 1. Let X be a rationally connected variety of dimension 3, and let G ⊂ Bir(X) be a

finite abelian group. Assume that

• either (Loginov, 2024, Conjecture 1.8) holds,

• or G acts faithfully on a GQ-Fano threefold X ′ with |−KX ′ | ̸= 0.

Then G is isomorphic to one of the following groups (and all these cases are realized):

G

(1) Zk ×Zl ×Zm k ≥ 1, l ≥ 1, m ≥ 1

(2) Z2k×Z2
4 ×Z2 k ≥ 1

(3) Z3k×Z3
3 k ≥ 1

(4) Z2k×Z2l ×Z2
2 k ≥ 1, l ≥ 1

(5) Z2n×Z4
2 n ≥ 1

(6) Z2
4 ×Z3

2

(7) Z6
2

(8) Z4
4

(9) Z3
6 ×Z2

(10) Z2
6 ×Z2

3

(11) Z2
8 ×Z4 ×Z2

Table 1. Conjectural list of all finite abelian groups that can act on a rationally connected

threefold

In Table 1, the groups (1)–(7) are of product type, so they can act on a rational threefold, while

the groups (8)–(11) are of K3 type and not of product type.

Finite abelian groups of symplectic automorphisms of K3 surfaces were classified by V. Nikulin

in the famous paper Nikulin (1980a), see Theorem 18. The classification of Brandhorst and

Hofmann (2023) provides the list of all maximal finite abelian groups that can faithfully act on

a K3 surface, cf. Theorem 19. It turns out that all but 6 of them can be realized as subgroups

of Cr2(C).

Proposition 2. Let H be a finite abelian group that faithfully acts on a K3 surface. Assume

further that H is not isomorphic to a subgroup of Cr2(C), that is, it cannot faithfully act on a

rational surface. Then H is isomorphic to one of the following groups:
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1. Z3
4,

2. Z2
6 ×Z2,

3. Z6 ×Z2
3,

4. Z8 ×Z4 ×Z2,

5. Z5
2,

6. Z4 ×Z3
2.

Using the results of Brandhorst and Hofmann (2023), we give a more precise description of

the action of these 6 groups on K3 surfaces, including the decomposition into symplectic and

non-symplectic subgroups and invariant lattice in cohomology of a surface, see Corollary 13

and Proposition 20. In particular, all of these 6 groups are not symplectic. In fact, all the finite

abelian groups of symplectic automorphisms can be realized as subgroups of Cr2(C).

Using the exact sequence (2) and Proposition 7, we conclude that if H is not one of 6 groups

from Proposition 2 then G is of product type. Hence, to study groups of K3 type which are not

or product type, we may assume that H is one of the 6 groups as in Proposition 2. The problem

is to bound the number m as in (2). As shown in (Loginov, 2022, Proposition 11.3), this number

can be bounded by the maximal index of Fano threefolds with canonical singularities.

Example 3. We construct the actions on (singular) Fano varieties in weighted projective

spaces of groups of K3 type.

1. Let X4 ⊂ P4 be given by the equation

x4
0 + x4

1 + x4
2 + x4

3 + x4
4 = 0,

with the action of G = Z4
4. Note that X4 is smooth.

2. Let X6 ⊂ P(1,1,1,1,3) be given by the equation

x6
0 + x6

1 + x6
2 + x6

3 + x2
4 = 0,

with the action of G = Z3
6 ×Z2. Note that X6 is smooth.

3. Let X ′
6 ⊂ P(1,1,1,2,2) be given by the equation

x6
0 + x6

1 + x6
2 + x3

3 + x3
4 = 0,

with the action of G =Z2
6×Z2

3. Note that X ′
6 has 3 singular points of type 1/2×(1,1,1).

4. Let X8 ⊂ P(1,1,1,2,4) be given by the equation

x8
0 + x8

1 + x8
2 + x4

3 + x2
4 = 0,

with the action of G = Z2
8 ×Z4 ×Z2. Note that X8 has 2 singular points of type 1/2×

(1,1,1).
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5. Let X2,2,2 ⊂ P6 be the intersection of three quadrics, so it is given by the equations

6

∑
i=0

x2
i =

6

∑
i=0

λix2
i =

6

∑
i=0

µix2
i = 0,

with the action of G = Z6
2.

6. Let X4,4 ⊂ P(1,1,1,2,2,2) be given by the equations

x4
0 + x4

1 + x4
2 + x2

3 + x2
4 + x2

5 = λ0x4
0 +λ1x4

1 +λ2x4
2 +λ3x2

3 +λ4x2
4 +λ5x2

5 = 0,

with the action of G=Z2
4×Z3

2. Note that X4,4 has 4 singular points of type 1/2×(1,1,1).

By (Cheltsov & Park, 2017, Corollary 1.1.9) the varieties X in cases (1)–(4)1 in Example 3 are

not rational. This observation gives rise to the following question.

Question 4. Can the groups (1)–(4) as in Example 3 be realized as subgroups of Cr3(C)? In

other words, can such groups faithfully act on a rational threefold?

We note that the Fermat quartic K3 surface S4 in P3 which is a G-invariant hyperplane section

of X4 from Example 3.(1) enjoys many nice properties. For example, it has maximal possible

Picard rank 20, see Example 18. Recall that such K3 surfaces are called singular (although

later in the text we reserve this term for surfaces having singularities to avoid confusion). In fact

S4 is a Kummer K3 surface associated with the product of two isogenous elliptic curves Ei and

E2i. In Loginov (2024) it is shown that the “exceptional” finite abelian groups in Cr2(C), that is

group (3)–(5) from Theorem 10, correspond to elliptic curves with complex multiplication. As

pointed out by Schütt (2008), singular K3 surfaces in many ways behave like elliptic curves

with complex multiplication. Let S6,S′6,S8,S2,2,2,S4,4 be the G-invariant hyperplane sections

given by the equation x0 = 0 of Fano threefolds (2)–(6) from Example 3. Using the results of

Esser and Li (2025), one easily computes ρ(S6) = ρ(S′6) = 20, ρ(S8) = 18. This observation

motivates the following question.

Question 5. Are S6,S′6,S8,S2,2,2,S4,4 Kummer K3 surfaces?

It is known that singular K3 surfaces are classified by its transcendental lattice TS which is

even, positive definite and has rank 2. If the values of the quadratic form on this lattice are

divisible by 4, then S is Kummer. Similar criteria are known for K3 surfaces with Picard rank at

least 17, cf. (Huybrechts, 2016, 14.3.20). It would be interesting to compute these lattices for

the above surfaces.

1. KL: (6) as well. What about (5)?
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5.2 Preliminaries

We work over the field of complex numbers C. All the varieties are projective and defined

over C unless stated otherwise. We will use the language of the minimal model program (the

MMP for short), see e.g. Kollár and Mori (1998).

5.2.1 Group actions

We start with the following well known results.

Lemma 5 (cf. (Popov, 2014, Lemma 4)). Let X be an algebraic variety, and G be a finite group

such that G ⊂ Aut(X). Assume P ∈ X is a fixed point of G. Then the induced action of G on

the tangent space TPX is faithful.

By r(G) we denote the rank of a group G, that is, the minimal number of generators.

Lemma 6 (cf. (Y. Prokhorov, 2011, Lemma 2.6),(Loginov, 2024, Lemma 2.8)). Let X be a

three-dimensional algebraic variety with isolated singularities, and G be a finite abelian group

such that G ⊂ Aut(X).

1. If there is a curve C ⊂ X of G-fixed points, then r(G)≤ 2.

2. If there is a (possibly, reducible) divisor S ⊂ X of G-fixed points, then r(G) ≤ 1. If

moreover S is singular along a curve, then G is trivial.

3. If X is smooth, and S ⊂ X is a divisor of G-fixed points such that S is singular, then G is

trivial.

5.2.2 Extensions of finite abelian groups

Let G be a finite abelian group. In what follows, we will denote by Gp the p-Sylow subgroup of

G where p is a prime number, so we have

G = ∏
p≥2

Gp.

We occasionally say that Gp is the p-part of G. For an abelian p-group Gp, we say that Gp

has type

λ = [λ1, . . . ,λk] for λ1 ≥ . . .≥ λk ≥ 0

if

Gp = Zλ1
p × . . .×Zλk

p .
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Note that the type of an abelian p-group is defined uniquely. Also, a sequence of finite abelian

groups

0 → H → G → K → 0 (7)

is exact if and only if for any prime p the p-parts Hp,Gp,Kp of the groups H,G,K, respectively,

form an exact sequence

0 Hp Gp Kp 0 (8)

We say that the exact sequence (8) is the p-part of the exact sequence (7).

To any type λ = [λ1, . . . ,λk] corresponds the Young diagram with λi squares in the i-th row. For

two Young diagrams λ = [λ1, . . . ,λk] and µ = [µ1, . . .µk], one can define their product λ · µ

as a formal linear combination of Young diagrams with non-negative coefficients, see e.g.

(Fulton, 2000, Section 2). Then the Littlewood–Richardson coefficient cν

λ µ
is the coefficient at

the Young diagram ν = [ν1, . . .νk] in the product of Young diagrams λ ·µ .

We recall the following criterion, which gives all the possible isomorphism classes for G to fit

into an exact sequence as above, in the case of finite abelian p-groups.

Theorem 9 ((Fulton, 2000, Section 2)). Let Gp,Hp, and Kp be finite abelian p-groups, respect-

ively of types µ = (µ1, . . . ,µk),λ = (λ1, . . . ,λk), and ν = (ν1, . . . ,νk). Then an extension of

the form

1 → Hp → Gp → Kp → 1

exists if and only if for the Littlewood-Richardson coefficient we have cµ

λν
> 0.

5.2.3 Groups or product type

We recall the results on finite abelian subgroups of Cremona groups in lower dimensions. The

one-dimensional case is elementary.

Proposition 6. Let G be a finite abelian subgroup of Cr1(C), which is isomorphic to Aut(P1)=

PGL(2,C). Then G is isomorphic to one of the following groups:

1. Zn, n ≥ 1,

2. Z2
2.

Theorem 10 (Blanc (2007)). Let G be a finite abelian subgroup of Cr2(C). Then G is iso-

morphic to one of the following groups:

1. Zn ×Zm, n ≥ 1, m ≥ 1,

2. Z2n×Z2
2, n ≥ 1,

3. Z2
4 ×Z2,

4. Z3
3,

5. Z4
2.
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Definition 11. We say that a finite abelian group G is a group of product type if G = G1 ×G2

where Gi ⊂ Cri(C). In particular, G is isomorphic to a subgroup in

Cr1(C)×Cr2(C)⊂ Cr3(C).

Using Proposition 6 and Theorem 10, we obtain

G

(1) Zk ×Zl ×Zm k ≥ 1, l ≥ 1, m ≥ 1

(2) Z2k×Z2
4 ×Z2 k ≥ 1

(3) Z3k×Z3
3 k ≥ 1

(4) Z2k×Z2l ×Z2
2 k ≥ 1, l ≥ 1

(5) Z2n×Z4
2 n ≥ 1

(6) Z2
4 ×Z3

2

(7) Z6
2

Table 2. Groups of product type

Proposition 7 ((Loginov, 2024, Proposition 3.12)). Let H ⊂ Cr1(K) and K ⊂ Cr2(K) be finite

abelian groups. Then an abelian extension G of H by K (or K by H) is of product type.

Definition 12. We say that a finite abelian group G is of K3 type, if G is an abelian extension

of a finite abelian group H that faithfully acts on a K3 surface, by a cyclic group:

0 → Zm → G → H → 0.

5.2.4 Fermat complete intersections

Consider a weighted projective space

P= P(ar0
0 : . . . : arM

M )

where ari
i stands for ri ≥ 1 consecutive identical weights ai, and 1 ≤ a0 ≤ . . . ≤ aM. Put N =

∑riai. Then P is called well formed, if gcd(ai) = 1 for any set of N−1 numbers ai. Let us recall

the structure of the automorphism groups of weighted projective spaces, cf. Przyjalkowski and

Shramov (2020).
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Lemma 13. Let P = P(ar0
0 , . . . ,a

rM
M ) be a well formed weighted projective space, where ari

i

stands for ri ≥ 1 consecutive identical weights ai, and 1≤ a0 ≤ . . .≤ aM. Then Aut(P)=R⋊L,

where R is generated by automorphisms of the form

[x0,1 : . . . : x0,r0 : x1,1 : . . . : x1,r1 : . . . : xp,1 : . . . : xp,rM ]

[x0,1 : . . . : x0,r0 : x1,1 +ϕ1,1 : . . . : x1,r1 +ϕ1,r1 : . . . : xp,1 +ϕp,1 : . . . : xp,rM +ϕp,rM ],

where each ϕp,q is a polynomial in the variables xi<p, j of degree ai on each variable xi, j, and

L is the quotient of GLr0 ×·· ·×GLrM by {(ta0Ir0 , . . . , t
aM IrM), t ∈ C×}= C×.

Definition 14. We define a Fermat hypersurface of degree d in a well formed weighted pro-

jective space P= P(ar0
0 , . . . ,a

rM
M ):

Xd =
{
∑xd/ai

i, j = 0
}
⊂ P,

where d is divisible by ai for any i.

Similarly, a Fermat complete intersection of multidegree d1 · . . . ·dk for k ≥ 1 in a well formed

weighted projective space P is given by

Xd1·...·dk =
{
∑λi, j;1xd1/ai

i, j = . . .= ∑λi, j;kxdk/ai
i, j = 0

}
⊂ P,

where ds is divisible by ai for any s and any i, and λi, j;s ∈ C.

Remark 8. Note that a Fermat hypersurface is a (singular) Fano variety if and only d < ∑riai.

A Fermat complete intersection is a (singular) Fano variety if and only if ∑di < ∑riai.

Lemma 15. Let X = Xd ⊂ P= P(ar0
0 : · · · : arM

M ) be a Fermat hypersurface. Then the group

G = (Zr0
d/a0

× . . .×ZrM
d/aM

)/Zd

faithfully acts on X .

Let X ′=Xd1...dk ⊂P=P(ar0
0 : · · · : arM

M ) be a Fermat complete intersection. Put d′= gcd(ds)1≤s≤k.

Then the group

G = (Zr0
d′/a0

× . . .×Zr0
d′/aM

)/Z′
d

faithfully acts on X ′.

Proof. Follows from Lemma 13.
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5.2.5 Lattices

We recall some generalities on lattices, see e.g. (Huybrechts, 2016, Chapter 14) or Nikulin

(1980b). By a lattice Λ we mean a free finitely generated abelian group Zn equipped with a

symmetric bilinear form

BΛ : Λ×Λ → Z.

The lattice Λ is called even if QΛ(v) := BΛ(v,v) is even for any v ∈ Λ. The dual lattice Λ∗ is

defined as

Λ
∗ = {v ∈ Λ⊗Q |BΛ(v,w) ∈ Z for any w ∈ Λ},

where the bilinear form BΛ is naturally extended to Λ⊗Q. The discriminant group of Λ is

defined as AΛ = Λ∗/Λ. If BΛ is non-degenerate then AΛ is a finite abelian group. In this case,

its order disc(Λ) = |AΛ| is called the discriminant of Λ. Note that

disc(Λ) = |detBΛ|,

where by abuse of notation we denote by BΛ the Gram matrix of Λ.

In what follows, by kΛ we will denote the lattice obtained from a lattice Λ by multiplying all its

vectors by k ∈ Z. In particular, we have BkΛ = k2BΛ.

5.2.6 Mori fiber space

Let G be a finite group. Recall that a normal projective G-variety X is called GQ-factorial,

if every G-invariant Weil divisor on X is Q-Cartier. A GQ-Mori fiber space is a GQ-factorial

variety X with at worst terminal singularities together with a G-equivariant contraction f : X →
Z to a normal variety Z such that ρG(X/Z) = 1 and −KX is ample over Z. If Z is a point, we

say that X is a GQ-Fano variety.

5.3 Group actions on K3 surfaces

In this section, we consider actions of finite abelian groups on K3 surfaces. By a K3 surface we

mean a normal projective surface S with at worst canonical singularities such that H1(S,OS) =

0 and KS ∼ 0.

Let H ⊂ Aut(S) be a finite group where S is a smooth projective K3 surface (we always can

assume this by passing to the minimal resolution). There is a natural exact sequence (cf.

Huybrechts (2016))

0 → H0 → H α−→ Zm → 0, (16)

where Zm is a cyclic group that acts via multiplication by a primitive m-th root of unity on a

non-zero holomorphic 2-form ωS on S.
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Definition 17. Let σ be a finite order automorphism of a K3 surface S. Then it is called a

symplectic automorphism, if α(σ) = 1. Otherwise, it is called non-symplectic. Moreover, we

call σ purely non-symplectic, if ord(α(σ)) = ord(σ).

A group H acting on S is called symplectic (resp., non-symplecic, purely non-symplectic), if

every non-trivial element of H is symplectic (resp., non-symplectic, purely non-symplectic).

Recall the following classical result.

Theorem 18 ((Nikulin, 1980a, 4.5)). In the exact sequence (16), the group H0 is isomorphic

to one of the following groups:

1. Zn, 1 ≤ n ≤ 8,

2. Z2 ×Z6,

3. Z2
3,

4. Z2
4,

5. Z2 ×Z4,

6. Zk
2, 1 ≤ k ≤ 4.

Proposition 9 (cf. (Huybrechts, 2016, 15.1.8)). A symplectic automorphism of finite order on

a K3 surface has finitely many fixed points. More precisely, for such an automorphism σ , if we

denote by Fix(σ) its fixed locus, we have

ord(σ) 2 3 4 5 6 7 8

|Fix(σ)| 8 6 4 4 2 3 2

Remark 10. A Nikulin involution is a symplectic automorphism of a smooth K3 surface of

order 2. According to Proposition 9, the fixed locus of a Nikulin involution consists of exactly 8

points.

We denote by ρ(S) the Picard rank of a (smooth) K3 surface S. It is well known that 1 ≤
ρ(S)≤ 20.

Proposition 11 (cf. (Huybrechts, 2016, 15.1.14)). In the exact sequence (16), the number m

satisfies

ϕ(m)≤ rkTS = 22−ρ(S),

and ϕ(m) | rkTS. In particular, m ≤ 66.

Also, if a (purely) non-symplectic automorphism σ has order m, the list of all possibilities for

m is given in (Brandhorst & Hofmann, 2023, Corollary 1.3). For example, if m is prime, then

m ∈ {2,3,5,7,11,13,17,19}.

Theorem 19 (Brandhorst and Hofmann (2023)). Let H be a finite abelian group that acts on

a smooth K3 surface. Assume that H is not purely non-symplectic. If H is assumed to be

maximal, then H is isomorphic to one of the following groups:
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1. Z3
4,

2. Z2
6 ×Z2,

3. Z6 ×Z2
3,

4. Z8 ×Z4 ×Z2,

5. Z5
2,

6. Z4 ×Z3
2,

7. Z12×Z6,

8. Z60,

9. Z10×Z5,

10. Z12×Z4,

11. Z12×Z2
2,

12. Z18×Z3,

13. Z15×Z3,

14. Z42,

15. Z30×Z2,

16. Z28×Z2,

17. Z24×Z2,

18. Z20×Z2,

19. Z18×Z2,

20. Z16×Z2.

Remark 12. Among all the groups in Theorem 19, only the groups (1)–(6) are not isomorphic

to a subgroup of Cr2(C). However, all the groups in Theorem 19 are isomorphic to subgroups

of Cr3(C), and moreover, they are all of product type.

Corollary 13. Let H be the groups (1)–(6) from Proposition 19. Then the exact sequence (16)

splits, so we have

H = H0 ×Zm

where H0 is the subgroup of symplectic automorphisms, and Zm is the group whose non-trivial

elements act purely non-symplectically. More precisely, one of the following holds

1. H0 = Z2
4, m = 4,

2. H0 = Z6 ×Z2, m = 6,

3. H0 = Z2
3, m = 6,

4. H0 = Z4 ×Z2, m = 8,

5. H0 = Z4
2, m = 2,

6. H0 = Z3
2, m = 4.

Proof. From the case by case analysis using Theorem 19, Theorem 18 and the exact se-

quence (16) we obtain the cases (1)–(6) and one exceptional case H0 = Z4
2,m = 2. However,

the latter case is not realized according to Brandhorst and Hofmann (2023).

We collect some examples of actions of finite abelian groups on K3 surfaces.

Example 14. We start with the case of smooth K3 surfaces which is a Fermat complete

intersections on which the following group G acts faithfully (cf. Lemma 15).

K3 surface Group

(1) X6 ⊂ P(1,1,1,3) Z2
6 ×Z2

(2) X4 ⊂ P3 Z3
4

(3) X2,2,2 ⊂ P5 Z5
2

Table 3. Examples of smooth K3 surfaces with the action of a finite abelian group



5.3. Group actions on K3 surfaces 139

Example 15. Now we treat the case of singular K3 surfaces, cf. Iano-Fletcher (2000). Taking

the minimal resolution, we obtain a smooth K3 surface with the action of the group H. We

also describe singularities of S. For example, we write Sing(S) = 3A1 +4A2, if X has 3 du Val

singular points of type A1 and 4 singular points of type A2. To compute the group H one can

use Lemma 15.

K3 surface Group Singularities

(1) X4,4 ⊂ P(1,1,2,2,2) Z4 ×Z3
2 4A1

(2) X8 ⊂ P(1,1,2,4) Z8 ×Z4 ×Z2 2A1

(3) X6 ⊂ P(1,1,2,2) Z2 ×Z3
3 3A1

(4) X12 ⊂ P(1,3,4,4) Z4 ×Z2
3 3A3

(5) X12 ⊂ P(1,2,3,6) Z6 ×Z4 ×Z2 2A1 +2A2

(6) X12 ⊂ P(2,3,3,4) Z2
4 ×Z3 3A1 +4A2

(7) X6,6 ⊂ P(1,2,3,3,3) Z3 ×Z3
2 4A2

(8) X6,6 ⊂ P(2,2,2,3,3) Z2
3 ×Z2 9A1

Table 4. Examples of singular K3 surfaces with the action of a finite abelian group

Recall that a Kummer K3 surface is the minimal resolution of a quotient of an abelian surface

A by the multiplication by −1. In the next example, we show the existence of a Kummer K3

surface with the action of the group H = Z4 ×Z3
2.

Example 16. Let E1 be an elliptic curve with a faithful action of H ′ = Z3
2, and E2 be an elliptic

curve with a faithful action of H ′′ = Z2 ×Z4 (so that the j-invariant of E2 is equal to 1728).

Note that H ′ acts on the set of 2-torsion points {a1,a2,a3,a4} of E1 transitively, while H ′′

acts on the set of 2-torsion points {b1,b2,b3,b4} of E2 with two orbits of cardinality 2, say, it

interchanges b1 with b3 and b2 with b4. Consider an abelian surface A=E1×E2, which admits

the action of H ′×H ′′ = Z4
2 ×Z4. It follows that H ′×H ′′ has 2 orbits of cardinality 8. Consider

the quotient S = A/σ where σ = (σ1,σ2), and σi is the multiplication by −1 on Ei. Then S is a

K3 surface with 16 singular points of type A1. From the construction it follows that S admits a

faithful action of H = (H ′×H ′′)/(Z2) = Z3
2 ×Z4. One checks that ρ(S′) = 20 where S′ is the

minimal resolution of S.

Example 17. Similarly to Example 16, one can construct a Kummer K3 surface S with 16 A1

singularities that admits a faithful action of Z5
2. Note that all the singular points of S lie in the

same H-orbit in this case. As in the previous case, the Picard rank of the minimal resolution

S′ of S is equal to 20.
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5.4 K3 surfaces: lattices

Let S be a smooth projective K3 surface. Consider the second cohomology group H2(S,Z)
as a lattice ΛK3 endowed with the cup product. It is well known that ΛK3 = U⊕3 ⊕E8(−1)⊕2

where U is the hyperbolic lattice, E8 is the unique positive-definite, even, unimodular lattice of

rank 8, and E8(−1) means that we multiply the Gram matrix of E8 by (−1). Recall that on a

K3 surface S we have Pic(S) = NS(S), and

NS(S) = {x ∈ H2(S,Z) | x ·ωS = 0},

where ωS is (the class of) a non-zero holomorphic 2-form on S. The transcendental lattice

T (S) is defined as follows:

TS = NS(S)⊥.

It follows that the sublattice

NS(S)⊕TS ⊂ H2(S,Z)

has finite index.

Example 18. For a Fermat quartic surface S4 ⊂ P3, according to (Huybrechts, 2016, 3.2.6),

one has

NS(S) = E8(−1)⊕2 ⊕U ⊕Z(−8)⊕Z(−8), TS = Z(8)⊕Z(8).

In particular, one has ρ(S4) = 20.

Lemma 20. Let S be a smooth K3 surface with a faithful action of finite group H. If the action

of H on S is non-symplectic, then NS(S)H = H2(S,Z)H .

Proof. Consider an element x ∈ H2(S,Z)H . Consider its decomposition x = x2,0 + x1,1 + x0,2

as an element of H2(S,C) where x2,0 ∈ H2,0(S), x1,1 ∈ H1,1(S), and x0,2 ∈ H0,2(S). Then for a

non-symplectic element h ∈ H we have

h∗(x) = h∗(x2,0)+h∗(x1,1)+h∗(x0,2) = x2,0 + x1,1 + x0,2 = x.

Since the element h acts on the generator of H2,0(S) (resp., of H2,0(S)) non-trivially, it follows

that x2,0 = 0 (resp., x0,2 = 0). Hence x ∈ H2(S,Z)∩ H1,1(S) = NS(S). Thus, H2(S,Z)H ⊂
NS(S)H , and the result follows.

Using Corollary 13, we obtain the following.

Corollary 19. For the groups (1)–(6) as in Theorem 19 we have NS(S)H = H2(S,Z)H .

The following proposition is crucial to our work.

Proposition 20. Let H be one of the groups (1)–(6) in Theorem 19, and let S be a smooth

K3 surface with a faithful action of H. Let M be the intersection matrix on H2(S,Z)H . Put

r = rkH2(S,Z)H . Then one of the following cases holds.
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1. H = Z2
6 ×Z2, r = 1, M = (2),

2. H = Z3
4, r = 1, M = (4),

3. H = Z8 ×Z4 ×Z2, r = 2, M =

(
0 2

2 0

)
,

4. H = Z6 ×Z2
3, r = 2, M =

(
0 3

3 0

)
,

5. H = Z5
2, 1 ≤ r ≤ 5,

6. H = Z4 ×Z3
2, 2 ≤ r ≤ 6.

The possible intersection matrices in the cases (5) and (6) are presented in the Appendix.

Proof. Follows from the database provided by Brandhorst and Hofmann (2023).

Lemma 21. Assume that a finite abelian group H faithfully acts on a K3 surface S with at

worst du Val singularities. Let f : S̃ → S is the minimal resolution which is automatically H-

equivariant. Put r = rkH2(S,Z)H . Then the following holds.

1. If r = 1, then S is smooth.

2. If r = 2, then the singular points of S form one H-orbit.

Corollary 21. Let H be a group isomorphic to Z3
4 or Z2

6 ×Z2. Then any K3 surface with a

faithful action of H is smooth.

Proof. Follows from Lemma 21 and Proposition 20.

Corollary 22. Let H be a group isomorphic to Z8 ×Z4 ×Z2 or Z6 ×Z2
3 faithfully acting on a

K3 surface S. Let f : S′ → S be the minimal resolution. Then H acts on the set of f -exceptional

(−2)-curves transitively. In particular, singularities on S form one H-orbit, and they can be only

of type A1 or A2.

Remark 23. Let S be a K3 surface with du Val singularities endowed with an action of a

finite abelian group H. Let f : S̃ → S be its minimal resolution. Note that f is automatically

H-equivariant. Then

NS(S̃)Q = f ∗NS(S)Q⊕VQ

where V = ⟨Ei⟩ is a subgroup in NS(S̃) spanned by the f -exceptional (−2)-curves Ei, and

VQ =V ⊗Q. However, it is not true that

NS(S̃) = f ∗NS(S)⊕V.

Indeed, otherwise we would have

NS(S̃)H = f ∗NS(S)H ⊕V H ,

which is not the case, as the following example shows.
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Example 24. Consider a K3 surface S as in Example 15.(2) with the action of H = Z8 ×Z4 ×
Z2. Let f : S̃ → S be the minimal resolution. By Proposition 20 we have that Λ = NS(S̃)H is

the lattice with the Gram matrix

BΛ =

(
0 2

2 0

)
.

Put

Λ
′ = f ∗NS(S)H ⊕V H

where V = ⟨Ei⟩ is a subgroup in NS(S̃) spanned by the f -exceptional (−2)-curves Ei. Then

Λ′ has the Gram matrix

BΛ′ =

(
4 0

0 −4

)
.

This implies that ρH(S) = 1, and NS(S)H = Z[2A] where A is the restriction of O(1) in

P(1,1,2,4) to S, so we have A2 = 1. Then the lattice 2Λ = 2NS(S̃)H , which has the Gram

matrix

B2Λ =

(
0 8

8 0

)
,

is a sublattice of Λ′. We have the inclusions 2Λ ⊂ Λ′ ⊂ Λ.

Proposition 25. We have

µNS(S̃)⊂ f ∗NS(S)⊕V ⊂ NS(S̃).

where where V = ⟨Ei⟩ is a subgroup in NS(S̃) spanned by the f -exceptional (−2)-curves Ei,

and µ is the index of Cl(S) in NS(S) = Pic(S). Similarly, we have

µNS(S̃)H ⊂ f ∗NS(S)H ⊕V H ⊂ NS(S̃)H . (22)

Consequently,

det(NS(S̃)H) | det(NS(S)H)detV | µ
2ρ det(NS(S̃)H), (23)

where ρ is the rank of NS(S̃)H .

Proof. Let D∈NS(S̃)H . Then f ∗ f∗D=D+∑aiEi where Ei ∈V and ai ∈Z[ 1
µ
]. Hence, µ f∗D∈

NS(S)H , and µ f ∗ f∗D belongs to f ∗NS(S)H . Thus, µ( f ∗ f∗D−D) ∈V . This shows (22). Then

(23) follows by taking the determinant of the lattices in (22).
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5.5 Terminal singularities

In this section, we recall the classification of three-dimensional terminal singularities, cf. Mori

(1985), Reid (1987). Let x ∈ X be a germ of a three-dimensional terminal singularity. Then

the singularity is isolated: Sing(X) = {P}. The index of x ∈ X is the minimal positive integer r

such that rKX is Cartier. If r = 1, then x ∈ X is Gorenstein. In this case P ∈ X is analytically

isomorphic to a hypersurface singularity in C4 of multiplicity 2. Moreover, any Weil Q-Cartier

divisor D on x ∈ X is Cartier. Also, in this case x ∈ X is a compound du Val singularity,

which means that its general hyperplane section H that contains P is a surface with a du

Val singularity at x. We say that x ∈ X has type cA, cD, or cE if x ∈ H is a du Val singularity of

type A, D, or E, respectively. If r > 1, then there is a cyclic étale outside P covering

π : x̃ ∈ X̃ → X ∋ x

of degree r such that x̃ ∈ X̃ is a Gorenstein terminal singularity (or a smooth point). The map

π is called the index-one cover of x ∈ X , and it is defined canonically.

Theorem 24 (Mori (1985); Reid (1987)). Let x ∈ X be a three-dimensional terminal singularity

of index r > 1. Then x ∈ X is analytically isomorphic to the quotient {ϕ = 0}/(Zr) of a

hypersurface C4 defined by the equation

ϕ(x1, . . . ,x4) = 0,

where the group Zr acts on C4 such that the coordinates xi and the equation ϕ are semi-

invariant. Moreover, up to an analytic Zr-equivariant coordinate change, the hypersurface

ϕ = 0 and the Zr-action are described by one of the rows in the following table (where m

denotes the maximal ideal of x ∈ X ):

Type Index Equation ϕ(x1,x2,x3,x4) Weights

cA/r r ≥ 1 x1x2 +ψ(xr
3,x4) (1,−1,a,0;0),

(r,a) = 1

cAx/2 r = 2 x2
1 + x2

2 +ψ(x3,x4), ψ ∈m4 (0,1,1,1;0)

cD/2 r = 2 x2
4+ψ(x1,x2,x3), ψ ∈m3 with x1x2x3 or

x2
2x3 ∈ ψ

(1,1,0,1;0)

cE/2 r = 2 x2
4+x3

1+ψ(x2,x3)x1+θ(x2,x3), θ /∈m5 (0,1,1,1;0)

cD/3 r = 3 x2
4 +ψ(x1,x2,x3) with ψ3 = x3

1 +x3
2 +x3

3

or x3
1 + x2x2

3 or x3
1 + x3

2

(1,2,2,0;0)

cAx/4 r = 4 x2
1 + x2

2 +ψ(x2
3,x4), ψ ∈m3 (1,3,1,2;2)

Table 5. Terminal singularities
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5.5.1 Baskets of singularities

For a three-dimensonal terminal singularity x ∈ X there is a deformation to k ≥ 1 terminal

cyclic quotient singularities x1, . . . ,xk. The number k = aw(x ∈ X) is called the axial weight of

x ∈ X . We may assume that the singularities xi have type 1
ri
(1,−1,bi) where 0 < bi ≤ ri/2.

The collection {x1, . . . ,xk} is known as the basket of singularities of x ∈ X and it can be written

as

B(x ∈ X) =

{
ni ×

1
ri
(1,−1,bi)

}
.

By the basket of singularities of X , denoted by B(X), we mean the union of all baskets of

x ∈ X for all non-Gorenstein singular points x ∈ X .

If x ∈ X is a non-Gorenstein singularity of index r, then in its basket of cyclic quotient singular-

ities all the points in the basket have index r, except in the case when x ∈ X is of type cAx/4,

in which case one of the points in the basket has index 4, and all the other points in the basket

have index 2. Moreover, if x ∈ X is not a quotient singularity itself, then in the basket of x ∈ X

there are at least two points.

5.5.2 Orbifold Riemann-Roch

By (Reid, 1987, 10.2), for a terminal threefold X and a Weil Q-Cartier divisor D on it we have

the following version of the Riemann-Roch formula:

χ(OX(D)) = χ(OX)+
1

12
D(D−KX)(2D−KX)+

1
12

D · c2(X)+∑
Q

cQ(D) (25)

where for any cyclic quotient singularity Q we have

cQ(D) =−i
r2 −1
12r

+
i−1

∑
j=1

b j(r−b j)
2r

. (26)

Here r is the index of Q, the divisor D has type i 1
r (a,−a,1) at Q, b satisfies ab = 1 mod r, and

denotes the residue modulo r. For non-cyclic non-Gorenstein singularities, their contribution

to the right-hand side of 25 is computed in terms of their basket of cyclic points. Moreover,

by (Reid, 1987, 10.3) (see (Y. G. Prokhorov, 2021, Theorem 12.1.3) in the case of GQ-Fano

threefolds) one has

(−KX) · c2(X)+∑
Q
(r−1/r) = 24 (27)

Since (−KX) ·c2(X)> 0, we see that the number of non-Gorenstein singular points is at most

15.
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5.5.3 Geometry of the flag x ∈ S ⊂ X

We start with the following lemma which is well-known to experts.

Lemma 28. Assume that X is a terminal threefold. Let S ∈ | − KX | be an anti-canonical

element, and let x be a point which is singular on X . Then x is a singular point on S.

Proof. We may assume that x ∈ S ⊂ X is a germ. The claim is clear if x is a Gorenstein point.

Assume that x is non-Gorenstein of index r > 1. Consider the index one cover π : X̃ → X

which is étale of degree r outside x. Assume that S is smooth at x. Put π−1(S) = S̃. Then

π|S̃\x̃ : S̃ \ {x̃} → S \ {x} is étale outside P as well. Since by assumption S is smooth at P, it

follows that S \{x} is simply-connected. Hence the cover π|S̃\{x̃} : S̃ \{x̃} → S \{x} splits, so

that S̃=∑ S̃i, and S̃i∩ S̃ j = {x̃} for i ̸= j. However, since rS is Cartier, it follows that rS̃ is Cartier

as well, and hence Cohen-Macaulay (here we use the fact that three-dimensional terminal

singularities are Cohen-Macaulay). Thus, S̃\{x̃} should be connected, which is not the case.

This leads to a contradiction, which shows that S is singular at x. The result follows.

Remark 26. Let x ∈ S be a germ of a du Val singularity. Let πab
1 (S\{x}) be the abelianization

of the local fundamental group. Then there are the following possibilities for πab
1 (S \ {x})

according to the type of singularity:

1. Zn+1 for type An,

2. Z2 ⊕Z2 for type Dn for even n ≥ 4,

3. Z2 for type Dn for odd n ≥ 5,

4. Z3 for type E6,

5. Z2 for type E7,

6. 0 for type E8.

Assume there exists a finite morphism x̃ ∈ S̃ → S ∋ x such that the induced map π|S̃\{x̃} : S̃ \
{x̃} → S \ {x} is a non-split cyclic étale covering of degree k. Then πS̃\{x̃} corresponds to a

subgroup H of πab
1 (S \ {x}) such that πab

1 (S \ {x})/H = Zk. In particular, if x ∈ S ⊂ X where

x ∈ X is a non-Gorenstein threefold terminal point of index r and S ∈ | − KX | has du Val

singularities, then π|S̃\{x̃} is non-split (see the proof of Lemma 28) cyclic étale covering of

degree r, hence r divides |πab
1 (S\{x})|.

Let x∈X be the germ of a terminal singularity, and let S∈ |−KX | be an anti-canonical element.

Assume that the pair (X ,S) is plt. Let π : x̃ ∈ X̃ → X ∋ x be the index 1 cover. Note that π

induces a cover π|S̃ : x̃ ∈ S̃ → S ∋ x. There exists the following diagram:

x̃ ∈ X̃ X ∋ x

x̃ ∈ S̃ S ∋ x

π

π|S̃

(29)
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We consider two cases: when x ∈ X is a cyclic quotient singularity, so (x̃ ∈ X̃)≃ (0 ∈C3), and

when x ∈ X is not a cyclic quotient singularity, so (x̃ ∈ X̃) ⊂ (0 ∈ C4). Note that in the latter

case S̃ is a Cartier divisor on X̃ ⊂ C4, hence S̃ is singular at x̃.

Proposition 27. Assume that x ∈ X is a cyclic quotient singularity of index r ≥ 1. If x̃ ∈ S̃ is

smooth then x ∈ S has type Ar−1.

Proof. By assumption, x̃ ∈ S̃ is smooth, so (x̃ ∈ S̃) ≃ (0 ∈ C2). Hence the non-split degree

r cyclic covering π|S̃\{x̃} : S̃ \ {x̃} → S \ {x} is a universal covering. It follows that π1(S \ {x})
is a group of order r. Since π|X̃\{x̃} is a cyclic covering, the group of deck transformations

of π|X̃\{x̃} is cyclic of order r. Thus, the group of deck transformations of π|S̃\{x̃} contains an

element of order r. Since |π1(S \ {x})| = r, it follows that π1(S \ {x}) = Zr. This implies that

x ∈ S is a singular point of type Ar−1.

5.5.4 Group action on a terminal singularity

Let X be a GQ-Fano threefold where G is a finite abelian group. Let x ∈ X be a germ of

a terminal singularity. Assume there exists a G-invariant element S ∈ |−KX | which is a K3

surface with du Val singularities. Then there is an exact sequence

0 Zm G H 0 (30)

where H faithfully acts on S, and Zm faithfully acts in the normal bundle to S in X for some

m ≥ 1. Let Gx and Hx be the stabilizers of x in G and H, respectively. Thus, we obtain the

exact sequence

0 Zm Gx Hx 0 (31)

Theorem 32 ((Loginov, 2024, Theorem 7.3)). Let x ∈ X be a germ of a threefold terminal

singularity and let Gx ⊂ Aut(x ∈ X) be a finite abelian subgroup. Then either r(Gx)≤ 3, or

Gx = Z2
2 ×Z2n×Z2m

for n,m ≥ 1. Moreover, in the latter case x ∈ X is a Gorenstein singularity of type cA. In

particular, in both cases G is of product type.

The diagram (29) induces the following diagram:

0 Zr G̃x Gx 0

0 Zr H̃x Hx 0

(33)

where G̃x is the lifting of Gx, and H̃x is the lifting of Hx. This means that G̃x faithfully acts on

x̃ ∈ X̃ , and H̃x faithfully acts on x̃ ∈ S̃.
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Proposition 28. Assume that

• either r > 2 ,

• or Gx is a 2-group.

Then the lifting G̃x is abelian.

Proof. The first claim is (Loginov, 2024, Proposition 7.13). The second claim follows from the

proof of (Loginov, 2024, Proposition 7.18).

Proposition 29. Assume that x ∈ X is a cyclic quotient singularity of index r ≥ 1. If x̃ ∈ S̃ is

singular then G is of product type.

Proof. Assume that x̃ ∈ S̃ is singular. Since Tx̃S̃ = Tx̃X̃ = C3, by Lemma 5 we know that

G̃x = H̃x, and hence Gx = Hx. It follows that in the exact sequences (??) and (30) we have

m = 1. Thus, we have G = H. Therefore G is of product type by Remark 12.

Corollary 30. Assume that x ∈ X is a cyclic quotient singularity of index r ≥ 1. Then either G

is of product type, or x̃ ∈ S̃ is smooth and x ∈ S is a singularity of type Ar−1.

Proof. Follows from Proposition 27 and Proposition 29.

Remark 31. Assume that x ∈ X is a cyclic quotient singularity of index r ≥ 1. Assume that

(x̃ ∈ S̃) is smooth, that is (x̃ ∈ S̃)≃ (0 ∈ C2). Then we have G̃x = H̃x ×Zk for some k ≥ 1. In

particular, there exists a homomorphism H̃x → G̃x which is inverse to the map G̃x → H̃x as

in (33).

Proposition 32. Assume that x ∈ X is a non-Gorenstein singularity which is not a cyclic

quotient singularity. Then the singular point x ∈ S cannot be of type A1 or A2. In particular, the

action of H on the set of (−2)-curves on the minimal resolution S′ of S cannot be transitive.

Proof. By Lemma 28, the point x∈ S is singular. Since x∈X is not a cyclic quotient singularity,

we have that x̃ ∈ X̃ is singular. Since S̃ is Cartier at the point x̃ in X̃ , we see that the point x̃ ∈ S̃

is singular as well. Hence the map π|S̃\{x̃} : S̃ \ {x̃} → S \ {x} is a non-trivial covering which

is not universal. Thus, x̃ ∈ S̃ cannot be of type A1 or A2, because in these cases S\{x} does

not admit such a covering, cf. Remark 26. The last claim follows from looking at the diagrams

of exceptional curves on the minimal resolution S′ of S.
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5.6 Case h0(−KX)≥ 2

Let X be a GQ-Fano threefold where G is a finite abelian group. Assume that h0(X ,O(−KX))≥
2, and that all the G-invariant elements in | −KX | are K3 surfaces with at worst canonical

singularities. Let S1 and S2 be two such surfaces. For i = 1,2 consider an exact sequence

0 Ci G Gi 0 (34)

where G1 faithfully acts on Si, and Ci fixes Si pointwise. Moreover, Ci is a cyclic group that

faithfully acts in the normal bundle to Si in X .

Lemma 35. We have that C1 (resp. C2) faithfully acts on S2 (resp. S1), and this action is purely

non-symplectic. In particular, we have C1 ∩C2 = {id}, and the maps C1 ↪→ G2 and C2 ↪→ G1

induced by the exact sequences (34) are injective.

Proof. Assume that C1 does not act faithfully on S2. Then there is a non-trivial element g ∈C1

acting trivially on S2. The fixed locus of g contains S1 ∪ S2, hence is singular along a curve

S1 ∩ S2. This is impossible by Lemma 6. Finally, expressing the volume form on S2 in local

coordinates at the general point x ∈ S1 ∩ S2, we see that the action of C1 on S2 is purely

non-symplectic. The claim for the action of C2 on S1 follows by symmetry.

From Lemma 35 and Corollary 13 we immediately obtain

Corollary 33. Fix i ∈ {1,2}. Put Ci = Zni . Then ni ∈ {1,2,3,4,6,8}.

Lemma 36. Fix i ∈ {1,2}. Consider an exact sequence

0 Ci G Gi 0

as in (34) where Ci = Zni , and ni ∈ {1,2,3,4,6,8}. If this exact sequence does not split, then

G is of product type.

Proof. It is enough to prove the result for i= 1. The group G is isomorphic to the direct product

of Gp1 ×·· ·×Gpk , where Gpi is an abelian group which fits in a short exact sequence of the

form

0 C1,pi Gpi G1,pi 0

where C1,pi and G1,pi are pi-Sylow subgroups of C1 and G1, respectively. Conversely, any

direct product Gp1 × ·· · × Gpk is a possible isomorphism class for G. We will proceed as

follows.

1. We fix an isomorphism class for G1, among those in Theorem 19.

2. For each n ∈ {1,2,3,4,6,8}, we use Theorem 9 to compute all possible classes of

p-Sylow subgroups of G.

3. We deduce the possible isomorphism classes for G.
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Applying systematically this method, we obtain the following. We have C1 = Zn1 . Put n = n1.

Assume that G is not isomorphic to Zn ×G1 and that r(G) > 3. Then for n ∈ {1,2,3,4,6,8}
we have the following possibilities.

• G1 = Z3
4. Then we have the following possibilities

1. n = 4, G = Z8 ×Z2
4 ×Z2,

2. n = 8, G = Z16×Z2
4 ×Z2.

• G1 = Z8 ×Z4 ×Z2. Then we have the following

1. n = 4, G = Z16×Z4 ×Z2
2, or G = Z2

8 ×Z2
2,

2. n = 8, G = Z32×Z4 ×Z2
2, or G = Z16×Z8 ×Z2

2, or G = Z16×Z2
4 ×Z2.

• G1 = Z4 ×Z3
2. Then

1. n = 2, G = Z8 ×Z3
2, or G = Z2

4 ×Z2
2,

2. n = 4, G = Z16×Z3
2, or G = Z8 ×Z4

2, or G = Z8 ×Z4 ×Z2
2,

3. n = 6, G = Z24×Z3
2,

4. n = 8, G = Z32×Z3
2, or G = Z16×Z4 ×Z2

2, or G = Z16×Z4
2.

• G1 = Z2 ×Z3
3. In this case we always have r(G)≤ 3.

• G1 = Z2
3 ×Z3

2. We obtain that r(G)≤ 3, or that G is isomorphic to Zn ×G1.

• G1 = Z5
2. G = Zi

2 ×Z4
2 with 2 ≤ i ≤ 4, or G = Z12×Z4

2.

Among all these possibilities, we see that if G is not isomorphic to Zn×G1, then it is of product

type.

Theorem 37. Assume that X is a GQ-Fano threefold with h0(−KX) ≥ 2 where G is a finite

abelian group. If G is of K3 type and not of product type then G is isomorphic to one of the

following groups:

1. Z4
4,

2. Z2
8 ×Z4 ×Z2,

3. Z2
6 ×Z2

3,

4. Z3
6 ×Z2.

Proof. By Lemma 36, we may assume that G = Zn ×G1, where G1 is one of the groups

(1)–(6) as in Theorem 19. The group G also fits into the exact sequence

0 C2 G G2 0

Moreover, we have that Zn ⊂ G2, and C2 ⊂ G1. We will proceed in the following way.

1. For a given group G1 from Theorem 19, we deduce the possibilities for C2.

2. For a given pair (G1,C2), we find all the possibilities for n.

We obtain the following possible configurations.

• G1 = Z3
4.
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C2 {Id} Z2 Z4

n 1 1,2 1,2,4

The group G is isomorphic to a subgroup of Z4
4.

• G1 = Z8 ×Z4 ×Z2.

C2 {Id} Z2 Z4 Z8

n 1 1,2 1,2,4 1,2,4,8

The group G is isomorphic to a subgroup of Z2
8 ×Z4 ×Z2.

• G1 = Z4 ×Z3
2.

C2 {Id} Z2 Z4

n 1 1,2 1,2,4

The group G is isomorphic to a subgroup of Z2
4 ×Z3

2, which is of product type.

• G1 = Z6 ×Z2
3.

C2 {Id} Z2 Z3 Z6

n 1 1,2 1,3 1,2,3,6

The group G is isomorphic to a subgroup of Z2
6 ×Z3

3.

• G1 = Z2
6 ×Z2.

C2 {Id} Z2 Z3 Z6

n 1 1,2 1,3 1,2,3,6

The group G is isomorphic to a subgroup of Z3
6 ×Z2.

• G1 = Z5
2.

C2 {Id} Z2

n 1 1,2

The group G is isomorphic to a subgroup of Z6
2, which is of product type.
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5.7 Orbits of non-Gorenstein points

Let G be a finite abelian group, and ket X be a 3-dimensional GQ-Fano variety. Assume that

the set of non-Gorenstein singularities of X is non-empty. Let us denote the set of all non-

Gorenstein points of X as follows:

k1 ×P1, k2 ×P2, . . . , kl ×Pl, ki ≥ 1 (38)

for l ≥ 1 where each Pi ∈ X is a germ of a terminal non-Gorenstein singularity of index ri > 1,

and ki×Pi means that we have exactly ki singular points of X locally analytically.isomorphic to

Pi ∈ X . In particular, Pi ∈ X and Pj ∈ X are not locally analytically isomorphic for i ̸= j. Hence,

each set {ki ×Pi} for 1 ≤ i ≤ l splits into G-orbits.

Assume that the pair (X ,S) is plt where S ∈ |−KX | is G-invariant element. Then S is a K3

surface with at worst canonical singularities. We have the following exact sequence:

0 Zm G H 0 (39)

where H faithfully acts on S, and m ≥ 1. By Lemma 28, we see that S has at least k1 + . . .+

kl du Val singularities that correspond to non-Gorenstein singularities on X . We denote by

f : S̃ → S the H-equivariant minimal resolution of S, so that S̃ is a smooth K3 surface with a

faithful action of H. We assume that H is one of the groups (1)–(6) as in Proposition 20. We

examine them case by case.

Lemma 40. The group H in (39) cannot be isomorphic either to Z2
6 ×Z2 or to Z3

4.

Proof. By Corollary 21, in this case S is a smooth K3 surface. However, this contradicts to the

assumption l ≥ 1 and Lemma 28.

Lemma 41. If H = Z8 ×Z4 ×Z2 and G is not of product type, then l = 1 and k1 is even.

Morever, the action of H (as well as G) on the set {ki × P1} is transitive. In particular, k1

divides 64.

Proof. By Corollary 22, there exists at most one H-orbit of singular points of S. By Lemma 28

it follows that there exists at most one G-orbit of non-Gorenstein singular points on X . Thus,

we have l = 1, and the action of G on the set {ki ×P1} is transitive. If k1 is odd, then G has a

fixed point, so by Theorem 32 we have that G is of product type. The last claim follows from

the orbit-stabilizer theorem.

Lemma 42. If H = Z6 ×Z2
3 and G is not of product type, then l = 1, and k1 is divisible by 3.

Moreover, the action of H (as well as G) on the set {ki ×P1} is transitive. In particular, k1

divides 54.
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Proof. As in the proof of Lemma 41, by Lemma 28 and Corollary 22 we have l = 1, and the

action of G on the set {ki ×P1} is transitive. If k1 is not divisible by 3, then G3 has a fixed

point. We deduce from Theorem 32 that G3 is of rank 3. For p ̸= 3, since r(Hp)≤ 1, we have

r(Gp) ≤ 2 for p ̸= 3. We deduce that r(G) ≤ 3. Thus G is of product type. The last claim

follows from the orbit-stabilizer theorem.

Lemma 43. If H =Z5
2 and G is not of product type, then ki is divisible by 8 for all i ∈ {1, . . . , l}.

Proof. If there exists i ∈ {1, . . . , l} such that ki is not divisible by 8, then G2 has an orbit of

length 1,2, or 4. But since H = Z5
2, the group G2 is of the form Zk

2 ×Z5
2, for some k ≥ 1, or

Zk
2 ×Z4

2, for some k ≥ 1. Hence, all subgroups of G2 of index 1 or 2 have rank at least 4, and

Theorem 32 implies that G2 cannot have an orbit of length 1 or 2. Assume there exists an orbit

of length 4. Then G2 has a subgroup of rank 3 or 4 fixing a point, and the latter is excluded by

the same result. So G2 has a subgroup of index 4 and rank 3, which implies that G2 is of the

form Zk
2 ×Z4

2, for some k ≥ 1. But then G is of product type.

Lemma 44. If H = Z4 ×Z3
2 and G is not of product type, then ki is divisible by 4 for all

i ∈ {1, . . . , l}.

Proof. If there exists i ∈ {1, . . . , l} such that ki is not divisible by 4, then G2 has an orbit of

length 1 or 2. The first case is excluded by Theorem 32, since r(G2) ≥ r(H) = 4. If G2 has

a subgroup G′
2 of index 2 fixing a point, then G′

2 is of rank 3, and we deduce that either

r(G2)≤ 3, and hence G is of product type, or G2 = Zk
2 ×Z4 ×Z2

2 for k ≥ 1, or G2 = Zk
2 ×Z3

2,

with k ≥ 2. In all cases, the group G is of product type.

We obtain the following.

Corollary 34. Either G is of product type, or gcd(k1, . . . ,kl) is divisible either by 2 or by 3,

where ki are as in (38). In particular, if gcd(k1, . . . ,kl) = 1 then G is of product type.

After applying Corollary 34 as well as Lemmas 40–44 to all the Fano threefolds of Fano index 1

and Fano genus −1, which we went through using the Graded Ring Database, and taking off

the baskets consisting only of singularities of type 1/2(1,1,1) which will be treated in Section

5.8, we end up with the following result.

Proposition 35. Assume that h0(−KX) = 1. If G is not of product type, then its basket is

among the following possibilities.

Basket of singularities of X Possibilities for H

9×1/2(1,1,1) Z6 ×Z2
3

12×1/2(1,1,1) Z4 ×Z3
2

2×1/10(3,7,1) Z8 ×Z4 ×Z2

2×1/11(4,7,1) Z8 ×Z4 ×Z2
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Basket of singularities of X Possibilities for H

6×1/4(1,3,1) Z8 ×Z4 ×Z2,

Z6 ×Z2
3

2×1/9(2,7,1) Z8 ×Z4 ×Z2

6×1/2(1,1,1),2×1/4(1,3,1) Z8 ×Z4 ×Z2

4×1/2(1,1,1),4×1/3(1,2,1) Z4 ×Z3
2

4×1/5(2,3,1) Z8 ×Z4 ×Z2,

Z4 ×Z3
2

4×1/2(1,1,1),4×1/4(1,3,1) Z8 ×Z4 ×Z2,

Z4 ×Z3
2

2×1/11(3,8,1) Z8 ×Z4 ×Z2

8×1/3(1,2,1) Z5
2,

Z4 ×Z3
2,

Z8 ×Z4 ×Z2

3×1/7(2,5,1) Z6 ×Z2
3

6×1/2(1,1,1),3×1/4(1,3,1) Z6 ×Z2
3

2×1/11(2,9,1) Z8 ×Z4 ×Z2

8×1/2(1,1,1),2×1/4(1,3,1) Z8 ×Z4 ×Z2

10×1/2(1,1,1),2×1/4(1,3,1) Z8 ×Z4 ×Z2

8×1/2(1,1,1),4×1/3(1,2,1) Z4 ×Z3
2

Table 6. Possible baskets of singularities on X and corresponding groups H

5.8 Case h0(−KX) = 1 with half-points

To illustrate our approach, we treat the case when the non-Gorenstein points of X have type
1
2(1,1,1). The main goal of this section is to prove the following

Theorem 45. Let X be a GQ-Fano threefold where G is a finite abelian group. Assume that

h0(−KX) = 1. Also, assume that the non-Gorenstein locus of X consists only of points of type
1
2(1,1,1). Then G is of product type.

Proposition 36. Assume that all the terminal non-Gorenstein points of X have type 1/2(1,1,1).

Then 9 ≤ N ≤ 15.

Proof. Since h0(X ,−KX) = 1, we see that X is non-Gorenstein. For D = −KX and singular

points of type 1
2(1,1,1) we have cQ =−1/8, so if there are N such points, in the formula (25)

they give a contribution −N/8. From (27) it follows that

(−KX) · c2(X) = 24− 3N
2
. (46)
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We have

1 = h0(OX(−KX)) = 3+
1
2
(−KX)

3 − N
4

(47)

Using (−KX)
3 ≥ 1/2 we obtain N ≥ 9. Since by the above we have N ≤ 15, the result follows.

We work in the setting of Section 5.7. In particular, we assume that H is one of the groups

(1)–(6) as in Proposition 20. By Corollary 34, we see that in the cases N = 11,13 the group G

is of product type. In the cases N = 10,14,15 by Lemmas 40–44 we see that the group G is

of product type as well. It remains to deal with the cases N = 9,12.

Proposition 37. If N = 9 then G is of product type.

Proof. By Lemmas 40–44 we see that H = Z6 ×Z2
3. Moreover, the 9 singular points of S

that correspond to the 9 singular points on X of type 1/2(1,1,1) form one G-orbit of length

9. Let f : S′ → S be a H-equivariant minimal resolution of S. By Corollary 22, the surface S

has singularities of type A1 or A2. In both cases there is an f -exceptional G-invariant curve

of self-intersection −18 on S′. The index µ of Cl(S) in NS(S) is equals either 2 or 3. By

Proposition 25, we have

µNS(S′)H ⊂ f ∗(NS(S)H)⊕V ⊂ NS(S′)H . (48)

Assume that µ = 2. By Proposition 20 we have(
2NS(S′)H ,

(
0 12

12 0

))
⊂

(
f ∗(NS(S)H)⊕V,

(
a 0

0 −18

))
⊂

(
NS(S′)H ,

(
0 3

3 0

))
.

Note that a = 6a′, since the values of the intersection form on NS(S′)H is divisible by 6. By

(23) we have that −108a′ divides −144 for a′ ≥ 1 which is a contradiction.

Assume that µ = 3. Analogously to the previous case, we have(
2NS(S′)H ,

(
0 27

27 0

))
⊂

(
f ∗(NS(S)H)⊕V,

(
a 0

0 −18

))
⊂

(
NS(S′)H ,

(
0 3

3 0

))
.

Then −18a divides −272, which is a contradiction. This shows that G is of product type.

The fact that the case N = 12 cannot realize follows from the following.

Proposition 38. Let X be a GQ-Fano threefold such that all non-Gorenstein singular points

of X are points of type 1/2(1,1,1). Assume that S ∈ |−KX | is a G-invariant K3 surface with

at worst du Val singularities. Assume that

1. H = Z4 ×Z3
2 where H is as in (34),

2. x belongs to a G-orbit of length 4.
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Then G is of product type.

Proof. By Corollary 30 and using its notation, we may assume that x̃ ∈ S̃ is smooth. Hence,

in the notation of diagram (33), we see that r(H̃x) ≤ 2 and so r(Hx) ≤ 2. Let Σ = {x =

x1,x2,x3,x4} be the G-orbit of x (or, equivalently, its H-orbit). Consider the following exact

sequence

0 Hx H HΣ 0 (49)

where HΣ is the image of H in the group of permutations of Σ. Since the action of H on Σ is

transitive, we have that either HΣ =Z4, or HΣ =Z2
2. The first possibility HΣ =Z4, Hx =Z3

2 is not

realized as r(Hx)≤ 2. Hence we have HΣ =Z2
2, and either Hx =Z4×Z2, or Hx =Z3

2. Similarly,

the second subcase is not realized since r(Hx) ≤ 2. We obtain HΣ = Z2
2, Hx = Z4 ×Z2. In

particular, the exact sequence (49) splits: H = Hx ×HΣ.

There exists the following diagram:

Ẽ ⊂ Bl0C2 BlxS ⊃ E

0 ∈ C2 S ∋ x

(50)

where Bl0C2 is the blow up of C2 at the closed point 0, BlxS is the blow up of S at the closed

point x, and horizontal arrows are quotient maps by the action of Z2. Hence, H̃x faithfully acts

on Bl0C2, and Hx faithfully acts on BlxS. There are exact sequences:

0 Hn Hx HE 0 (51)

0 → H̃N → H̃x → H̃Ẽ → 0, (52)

where

1. HE faithfully acts on the (−2)-curve E on BlxS,

2. H̃Ẽ faithfully acts on the (−1)-curve Ẽ on Bl0C2,

3. HN faithfully acts in the normal bundle to E on BlxS,

4. H̃N faithfully acts in the normal bundle to Ẽ on Bl0C2.

Since Ẽ is the ramification curve of the quotient map Bl0C2 → BlxS, we have HE = H̃Ẽ , and

H̃N/(Z2) = HN . From diagram (33) we obtain an exact sequence:

0 Z2 H̃x Hx 0

We claim that H̃x is abelian. Indeed, by Proposition 28 we see that G̃2 is abelian.
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Since r(H̃x)= 2, H̃x is abelian and Hx =Z4×Z2, we have that either H̃x =Z8×Z2, or H̃x =Z2
4.

We show that if the first possibility is realized then G is of product type. Let H̃x =Z8×Z2. Then

G̃x = Z8 ×Z2 ×Zn for some n ≥ 1, according to Remark 31. However, in this case r(Gx)≤ 2,

and hence G is of product type.

Thus, we have H̃x = Z2
4. Then H̃Ẽ = HE = Z4 whose generator acts on C2 via the matrix(√

−1 0

0 −
√
−1

)
, H̃N =Z4, whose generator acts on C2 via the matrix

(√
−1 0

0
√
−1

)
. We

have HN = Z2. Hence, the exact sequence (51) splits. As shown above, the exact sequence

(49) splits as well. Thus, we have

H = Hx ×HΣ = HN ×HE ×HΣ = Z2 ×Z4 ×Z2
2.

From the local description it follows that H̃N preserves the standard form dx∧ dy. It follows

that HN acts symplectically on S. Hence, there exists a symplectic element of order 4 in H =

Z4 ×Z3
2. However, this contradicts to Theorem 18.

5.9 Case h0(−KX) = 1 with cyclic quotient singularities

In this section, we assume that X the non-Gorenstein locus of X consists of cyclic quotient

singularities. We assume that it is not only composed of singularities of type 1/2(1,1,1), since

it has already been treated in Section 5.8. We prove the following

Theorem 53. Let X be a GQ-Fano threefold where G is a finite abelian group. Assume that

h0(−KX) = 1. Also, assume that the non-Gorenstein locus of X consists only of cyclic quotient

singularities. Then G is of product type.

The next table was obtained from the table in Proposition 35, using the assumption that all the

non-Gorenstein points on X are cyclic quotient singularities.

Singularities Possibilities for H Argument

2×1/10(3,7,1) Z8 ×Z4 ×Z2 Lemma 60

3×1/7(3,4,1) Z6 ×Z2
3 Lemma 54

2×1/11(4,7,1) Z8 ×Z4 ×Z2 Lemma 60

6×1/4(1,3,1) Z8 ×Z4 ×Z2,

Z6 ×Z2
3

Lemma 60,

Lemma 54

2×1/9(2,7,1) Z8 ×Z4 ×Z2 Lemma 60

4×1/2(1,1,1), 4×1/3(1,2,1) Z4 ×Z3
2 Lemma 61

4×1/5(2,3,1) Z8 ×Z4 ×Z2,

Z4 ×Z3
2

Lemma 60,

Lemma 61
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4×1/2(1,1,1),4×1/4(1,3,1) Z4 ×Z3
2 Lemma 61

2×1/11(3,8,1) Z8 ×Z4 ×Z2 Lemma 60

8×1/3(1,2,1) Z5
2,

Z8 ×Z4 ×Z2,

Z4 ×Z3
2

Lemma 55,

Lemma 60,

Lemma 61

3×1/7(2,5,1) Z6 ×Z2
3 Lemma 54

2×1/11(2,9,1) Z8 ×Z4 ×Z2 Lemma 60

8×1/2(1,1,1), 4×1/3(1,2,1) Z4 ×Z3
2 Lemma 61

Table 7. Possible baskets of cyclic quotient singularities

Lemma 54. If H is isomorphic to Z6 ×Z2
3, then G is of product type.

Proof. By Proposition 20 we have rk(PicH(S′))≤ 2, leaving us with only the following possib-

ilities among those presented in Proposition 35:

1. 3×1/7(3,4,1),

2. 6×1/4(1,3,1),

3. 3×1/7(2,5,1).

By Corollary 30 we may assume that S has singularity of type A6, A3 and A6, respectively, in

each of the three cases. However, it contradicts Corollary 22.

Lemma 55. If H = Z5
2, then G is of product type.

Proof. By Proposition 35, the only possible basket of singularities such that G may not be

of product type is 8× 1/3(1,2,1). By Lemma 43, the 8 non-Gorenstein singular points of X

belong to one G-orbit (and hence to one H-orbit as well).

By Corollary 30, we may assume that on S these singular points have type A2. Let x be such

a point. We have the following diagram:

(x̃ ∈ X̃)≃ (0 ∈ C3) X ∋ x

(x̃ ∈ S̃)≃ (0 ∈ C2) S ∋ x

π

π|S̃

(56)

There is an induced diagram:

0 Z3 G̃x Gx 0

0 Z3 H̃x Hx 0

(57)
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Now let Σ = {x = x1, . . . ,x8} be a G-orbit (or, equivalently, an H-orbit) of x. Consider the

following exact sequence

0 Hx H HΣ 0 (58)

where HΣ is the image of H in the group of permutations of Σ. Since the action of H on Σ is

transitive, we have HΣ = Z3
2. We obtain Hx = Z2

2. In particular, (58) splits: H = Hx ×HΣ.

Consider an exact sequence 0 Hs H Hns 0 where Hs is a sub-

group that acts on the minimal resolution of S symplectically, and Hns is a cyclic group. By

Corollary 13, we have Hs = Z4
2, and Hns = Z2.

Hence there exists a non-trivial element in Hx that acts symplectically, call it α . In other words,

α is a Nikulin involution. We know that it has exactly 8 fixed points, see Remark 10. It follows

that α permutes (otherwise it would have more than 8 fixed points) (−2)-curves over each

point xi in the minimal resolution of S. We have the following diagram:

Ẽ ′, Ẽ1, Ẽ2 ⊂ B̃l0C2 B̃lxS ⊃ E,E ′
1,E

′
2

Ẽ ⊂ Bl0C2 BlxS ⊃ E1,E2

0 ∈ C2 S ∋ x

3:1

3:1

(59)

where

1. Bl0C2 is the blow up of C2 at the closed point 0 with the exceptional (−2)-curves E1

and E2,

2. BlxS is the blow up of S at the closed point x with the exceptional (−1)-curve Ẽ,

3. B̃l0C2 is the blow up of two Z3-fixed points on Ẽ, where Ẽ1 and Ẽ2 are (−1)-curves,

and Ẽ ′ is a smooth rational (−3)-curve,

4. B̃lxS is the blow up of the intersection point of E1 with E2, so E ′ is a (−1)-curve, E ′
1 and

E ′
2 are smooth rational (−3)-curves.

Since α is symplectic, it lifts to an element that acts on C2 via the matrix

(
−1 0

0 −1

)
.

However, in this case the lift of α to B̃l0C2 does not interchange Ẽ1 and Ẽ2, hence it does

not interchange E1 with E2. This is a contradiction.

Lemma 60. If H is isomorphic to Z8 ×Z4 ×Z2, then G is of product type.

Proof. The only possibilities for non-Gorenstein points of X are the following.

1. 2×1/10(3,7,1),
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2. 2×1/11(4,7,1),

3. 6×1/4(1,3,1),

4. 2×1/9(2,7,1),

5. 4×1/5(2,3,1),

6. 2×1/11(3,8,1),

7. 8×1/3(1,2,1),

8. 2×1/11(2,9,1).

By Corollary 30, we may assume that S has k singular points of type Ari−1 that correspond to

k quotient singularities of index ri in the list above. However, by the Corollary 22 we see that

ri could be equal only to 2 or 3. This leaves us with the only case 8×1/3(1,2,1). Thus S has

8 singular points of type A2.

According to Corollary 13, we have H = Hs ×Hns, where Hs = Z4 ×Z2, Hns = Z8. By Pro-

position 28 we know that since r = 3, the lifting G̃x is abelian. Hence, the lifting H̃x is abelian

as well. Thus H̃x does not interchange the two (−2)-curves E1 and E2 as in diagram (59).

However, this contradicts to Corollary 22 as there are at least 2 H-orbits of (−2)-curves on

the minimal resolution of S.

Lemma 61. If H is isomorphic to Z4 ×Z3
2, then G is of product type.

Proof. By Proposition 35, the possibilities for the basket of singularities of X are the following.

1. 4×1/2(1,1,1),4×1/3(1,2,1)

2. 4×1/5(2,3,1)

3. 4×1/2(1,1,1),4×1/4(1,3,1)

4. 8×1/3(1,2,1)

5. 8×1/2(1,1,1),4×1/3(1,2,1)

Using Proposition 38, we exclude the cases (1) and (3) which leaves us with

1. 4×1/5(2,3,1)

2. 8×1/3(1,2,1)

3. 8×1/2(1,1,1),4×1/3(1,2,1)

Consider the case 8 × 1/3(1,2,1). Using (Loginov, 2024, Proposition 7.13) we know that

since r = 3, the lifting G̃x is abelian. Hence, the lifting H̃x is abelian as well. Thus it does not

interchange the two (−2)-curves E1 and E2 as in diagram (59).

Let Σ = {x = x1, . . . ,x8} be a G-orbit (or, equivalently, an H-orbit) of x. Consider the exact

sequence

0 Hx H HΣ 0 (62)

where HΣ is the image of H in the group of permutations of Σ.

Consider the case when (49) splits: H = Hx ×HΣ, and HΣ = Z3
2, Hx = Z4.
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We may assume that Hs =Z3
2, and Hns =Z4 (otherwise Hx contains a Nikulin involution which

has exactly 8 fixed points, so E1 and E2 should be permuted which contradicts to the fact that

the lifting G̃x is abelian).

The local computation shows that σ has 8 fixed (−2)-curves E1, . . . ,E8 and there are 8 (−2)-

curves E ′
1, . . . ,E

′
8 which are preserved by σ , so that Ei ·E ′

i = 1, Ei ·E ′
j = 0 for i ̸= j.

Also, one checks that there exists a curve C which is preserved by σ so that C · E ′
i = 1,

C ·Ei = 0 for any i, and σ2 fixes C pointwise. Observe that Z4
2 acts on C faithfully.

Assume that C is reducible. Then by Zhang (1998) it has two components C =C1+C2 so that

C1 and C2 are permuted by Z4
2. Hence Z3

2 acts on each component faithfully. Thus Ci are not

rational curves. We arrive at a contradiction with (Zhang, 1998, Theorem 3).

Assume that C is irreducible. Then it is easy to check that g(C) ≥ 3. However, this contra-

dicts to the classification of the fixed locus of non-symplectic involutions, see (Brandhorst &

Hofmann, 2023, Theorem 1.4).

Consider the case 8× 1/2(1,1,1),4× 1/3(1,2,1). Consider the orbit 4× 1/3(1,2,1). The

stabilizer of a point should contain a Nikulin involution. Since the lifting H̃x is abelian, it follows

that two (−2)-curve over x are not interchanged. Hence the Nikulin involution stabilizes 8

smooth rational curves, so it has more than 8 fixed points, which is a contradiction.

Finally, consider the case 4×1/5(2,3,1). The same argument as in the previous case applies.

5.9.1 Index 2 case

We treat the case when X is a GQ-Fano threefold of index at least 2. It turns out that the index

of X equal to 2, and the following cases are possible:

1. 2×1/3(1,2,2),2×1/7(3,4,2),

2. 4×1/3(1,2,2),2×1/5(1,4,2),

3. 2×1/5(2,3,2),2×1/7(1,6,2),

4. 2×1/11(4,7,2),

5. 2×1/5(1,4,2),2×1/7(3,4,2),

6. 3×1/3(1,2,2),3×1/5(1,4,2),

7. 3×1/7(3,4,2),

8. 2×1/3(1,2,2),2×1/9(4,5,2).

Proposition 39. The index 2 case is not realized.
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Proof. Using Corollary 30, we may assume that an index r cyclic quotient singularity x ∈ X

corresponds to a singular point x ∈ S of type Ar−1 on S. Note that in each case we have

singularities An on S for n > 2. On the other hand, the group H can be isomorphic either to

Z8 ×Z4 ×Z2, or to Z6 ×Z2
3. But then we get a contradiction with Corollary 22.

5.10 Case h0(−KX) = 1 with terminal singularities

In this section, we prove the following.

Theorem 63. Let X be a GQ-Fano threefold where G is a finite abelian group. Assume that

h0(−KX) = 1. Then G is of product type.

Proposition 40. Assume that all the non-Gorenstein points on X have index 2. Then G is of

product type.

Proof. If all of them are cyclic quotient singularities, then this case is already considered in

Section 5.8. Hence we may assume that at least one point, say P1 ∈ X , is not a cyclic quotient

singularity. Consider its basket {P1, j}, 1 ≤ j ≤ b1. By the discussion in 5.5.1 we have b1 ≥ 2.

By Lemma 43 and Lemma 44 we see that the groups H = Z5
2 and H = Z4 ×Z3

2 are excluded,

since in this case k1 is divisible by 4. Hence the total number N of half-points in the baskets

of k1 ×P1 is divisible by 8. However, by Proposition 36 we know that 9 ≤ N ≤ 15. This is a

contradiction.

Consider the case H = Z6 ×Z2
3. By Lemma 42 we have that k1 is divisible by 3. Hence the

total number N of half-points in the baskets of k1×P1 is divisible by 6. However, by Proposition

36 we know that 9 ≤ N ≤ 15. Thus N = 12, and so k1 = 6. By Lemma 42 we see that X has no

other singular points. Also, S has only singular points of type A1 or A2. However, the second

case is impossible as H acts on the singular points x1, . . . ,x6 transitively. We conclude that

S has 6 points of type A1. Consider the index 1 cover x̃ ∈ X̃ → X ∋ x and the induced cover

x̃ ∈ S̃ → S ∋ x. Note that S̃ is smooth since x ∈ S is a A1 singularity. However, x̃ ∈ X̃ is a

Gorenstein singular point, and S̃ is a Cartier divisor at x̃ ∈ X̃ . Thus S̃ should be singular at x̃,

which is a contradiction.

Consider the case H =Z8×Z4×Z2. By Lemma 41 we have that k1 is divisible by 2. Hence the

total number N of half-points in the baskets of k1×P1 is divisible by 4. However, by Proposition

36 we know that 9 ≤ N ≤ 15. Thus N = 12, and so k1 = 6. However, in this case G has at

least two orbits of singular points, which contradicts Lemma 41.

We have the following list of remaining possibilities.
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Singularities Basket of X Possibilities for H

2× cA/4 or

3× cA/4

6×1/4(1,3,1) Z8 ×Z4 ×Z2,

Z6 ×Z2
3

2× cA/4 4×1/5(2,3,1) Z8 ×Z4 ×Z2

4× cA/3 or

4× cD/3

8×1/3(1,2,1) Z8 ×Z4 ×Z2,

Z4 ×Z3
2

2× cAx/4 8×1/2(1,1,1), 2×1/4(1,3,1) Z8 ×Z4 ×Z2

2× cAx/4 10×1/2(1,1,1), 2×1/4(1,3,1) Z8 ×Z4 ×Z2

4 × cA/2 + 4 ×
1/3(1,2,1)

8×1/2(1,1,1), 4×1/3(1,2,1) Z4 ×Z3
2

2× cAx/4 6×1/2(1,1,1),2×1/4(1,3,1) Z8 ×Z4 ×Z2

4× cAx/4 4×1/2(1,1,1),4×1/4(1,3,1) Z8 ×Z4 ×Z2

3× cAx/4 6×1/2(1,1,1),3×1/4(1,3,1) Z6 ×Z2
3

Table 8. Possible baskets of singularities on X

Proposition 32 together with Corollary 22 exclude all cases except for the following:

1. 4× cA/3, H = Z4 ×Z3
2,

2. 4× cD/3, H = Z4 ×Z3
2,

3. 4× cA/2+4×1/3(1,2,1), H = Z4 ×Z3
2.

In the case (3), by Corollary 30 and Proposition 32 we may assume that we have 4A2 singu-

larities on S that correspond to 4×1/3(1,1,1), and 4 du Val singularities of type different from

A1 or A2. Denote by f : S′ → S the minimal resolution of S. It follows that there are at least 20

f -exceptional (−2)-curves. However, this contradicts to the fact that on a smooth K3 surface

S′ one has ρ(S′)≤ 20. Hence this case is not realized.

Consider the cases (1) (or (2)), that is, when X has singularities 4× cA/3 (or 4× cD/3), and

H = Z4 ×Z3
2. By Proposition 32 and Remark 26, we see that S has 4 singularities of type Ak

where k ≥ 5. However, arguing as in the previous case we get a contradiction with ρ(S′)≤ 20.

Hence this case is not realized as well. This proves Theorem 63.

5.11 Proof of main results

Proof of Theorem 4. Assume that G is a group that faithfully acts on a rational connected

threefold X . By a standard argument, we may assume that X is a projective GQ-Mori fiber

space over the base Z. If dimZ > 0 then G is of product type by (Loginov, 2024, Corollary

3.17). Hence we may assume that X is a GQ-Fano threefold.
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If h0(−KX)= 0 and for any GQ-Fano threefold X ′ which is G-birational to X we have h0(−KX ′)=

0, then G is of type (3) as in Theorem 4. Hence we may assume that h0(−KX) > 0. Also, by

Loginov (2024) we may assume that for any G-invariant element S ∈ |−KX |, the pair (X ,S)

is plt, so S is a K3 surface with at worst du Val singularities. If h0(−KX)≥ 2 then by Theorem

37 we have that G is of product type. So we may assume that h0(−KX) = 1. In particular, this

implies that the set of non-Gorenstein singularities of X is non-empty.

If the set of non-Gorenstein singularities consists of points of type 1/2(1,1,1), then by The-

orem 45 we have that G is of product type. If the set of non-Gorenstein singularities consists

of cyclic quotient singularities, then by Theorem 53 we have that G is of product type. Finally,

if the set of non-Gorenstein singularities consists of terminal points whic hare non necessarily

cyclic quotient singularities, then by Theorem 63 we have that G is of product type.

5.12 Appendix: Intersection matrices for K3 surfaces acted on by

Z5
2 and Z4 ×Z3

2

Proposition 41. Let S be a K3 surface with a faithful action of H = Z4 × Z3
2. Then the

intersection matrix M on PicH(S) is one of the following.

1. (
0 4

4 0

)
,

2. (
0 2

2 0

)
,

3. 0 0 2

0 −8 0

2 0 0

 ,

4. 
0 0 0 2

0 −4 0 0

0 0 −4 0

2 0 0 0

 ,
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5. 

0 0 0 0 0 2

0 −4 −2 2 2 0

0 −2 −4 2 2 0

0 2 2 −4 0 0

0 2 2 0 −4 0

2 0 0 0 0 0


,

6. 

0 −2 −2 2 −2 0

−2 −4 −2 0 −2 −2

−2 −2 −4 0 0 0

2 0 0 0 0 0

−2 −2 0 0 −4 0

0 −2 0 0 0 −4


,

7. 

0 0 0 2 0 0

0 −4 −2 0 −2 −2

0 −2 −4 0 0 0

2 0 0 0 0 0

0 −2 0 0 −4 0

0 −2 0 0 0 −4


,

8. 

0 0 2 0 0 0

0 −4 0 −2 −6 2

2 0 0 0 0 0

0 −2 0 −4 −6 2

0 −6 0 −6 −20 8

0 2 0 2 8 −4


,

9. 

0 −2 2 −4 −4 2

−2 −4 0 −4 −6 2

2 0 0 0 0 0

−4 −4 0 −8 −8 4

−4 −6 0 −8 −12 4

2 2 0 4 4 −4


,
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10. 

0 0 −2 −4 −2 −6

0 −8 −2 −20 −14 −26

−2 −2 −4 −8 −4 −12

−4 −20 −8 −60 −40 −78

−2 −14 −4 −40 −28 −52

−6 −26 −12 −78 −52 −104


.

Proposition 42. Let S be a K3 surface with a faithful action of H = Z5
2. Then the intersection

matrix M on PicH(S) is one of the following. We will also denote by A the restriction of M to

its anisotropic part in the Witt decomposition of M over Z. Moreover, the anisotropic part we

present is not further decomposable into orthogonal sublattices.

1. (
8
)
,

2. (
0 2

2 0

)
,

3. (
0 4

4 0

)
,

4. (
0 −2

−2 0

)
,

5. 0 0 2

0 −8 0

2 0 0

 ,

6. 
0 0 0 2

0 −4 0 0

0 0 −4 0

2 0 0 0

 ,

7. 
0 0 0 0 2

0 −4 −2 −2 0

0 −2 −4 −2 0

0 −2 −2 −4 0

2 0 0 0 0

 ,
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8. 
−4 −4 0 −2 −2

−4 −8 0 0 0

0 0 0 −2 0

−2 0 −2 −4 0

−2 0 0 0 −4

 ,

9. 
−4 2 −4 −6 2

2 0 0 0 0

−4 0 −4 −2 0

−6 0 −2 −12 6

2 0 0 6 −4

 ,

10. 
−52 −10 −20 −38 −28

−10 −4 −4 −6 −4

−20 −4 −8 −14 −10

−38 −6 −14 −28 −20

−28 −4 −10 −20 −16

 ,

11. 
−4 0 −2 −4 0

0 0 0 0 2

−2 0 −4 0 0

−4 0 0 −8 0

0 2 0 0 0

 ,

12. 
0 0 2 0 0

0 −4 0 −4 −2

2 0 0 0 0

0 −4 0 −12 −6

0 −2 0 −6 −4

 ,

13. 
0 2 2 −2 0

2 4 4 −2 −2

2 4 0 0 0

−2 −2 0 −4 0

0 −2 0 0 −4

 ,
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14. 
−4 −4 −2 −2 0

−4 −8 0 0 0

−2 0 −4 0 0

−2 0 0 −4 2

0 0 0 2 −4

 .



Chapter 6

Groups acting on Fano threefolds in

the family №2.12, and K-stability

"No day without a line."

Natalia Cheltsova

In this chapter, we present the results obtained in Cheltsov, Li, et al. (2024). We describe all

groups that can act faithfully on Fano threefolds that are the smooth complete intersection

of three divisors of bidegree (1,1) in P3 ×P3. These threefolds are rational since they are

isomorphic to the blow-up of P3 along a smooth curve of degree six and genus three. They are

particularly attractive to us since their automorphism groups are either isomorphic to groups

of automorphisms of smooth plane quartics, or a double extension of them. The reader might

notice that we did not give this chapter the name of the article it presents. This is because

this thesis focuses on groups of symmetries, whereas the paper was written with the aim

of describing the K-stability of those threefolds. It is also the reason why we end this Ph.D.

thesis with this work; we will make an opening to the world of K-stability. Recall one of the

most celebrated results in modern geometry, called the Yau-Tian-Donaldson conjecture and

proven in Chen, Donaldson, and Sun (2015).

Theorem 43. A smooth Fano manifold admits a Kähler-Einstein metric if and only if it is K-

polystable.

We will present many examples of K-polystable Fano threefolds in the family described above.

All authors have approved the inclusion of this work in the present thesis and acknowledge

equal contribution.
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6.1 Introduction

Let C be a smooth quartic curve in P2, let D be a divisor of degree 2 on the curve C such that

h0(OC(D)
)
= 0. (1)

Then KC +D is very ample, see Homma (1980), and the linear system |KC +D| gives an

embedding ϕ : C ↪→ P3. We set C6 = ϕ(C). Then C6 is a smooth curve of degree 6 and genus

3.

Let π : X → P3 be the blow up of the curve C6. Then X is a Fano threefold in the deformation

family №2.12 in the Mori–Mukai list, and every smooth member of this family can be obtained

in this way. Moreover, the Fano threefold X can be given in P3 ×P3 by

(x0,x1,x2,x3)M1


y0

y1

y2

y3

= (x0,x1,x2,x3)M2


y0

y1

y2

y3

= (x0,x1,x2,x3)M3


y0

y1

y2

y3

= 0 (2)

for appropriate 4×4 matrices M1, M2, M3 such that π is induced by the projection to the first

factor, where ([x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]) are coordinates on P3 ×P3.

Let π ′ : X → P3 be the morphism induced by the projection P3 × P3 → P3 to the second

factor. Then π ′ is a blow up of P3 along a smooth curve C′
6 of degree 6 and genus 3, and

the π ′-exceptional surface is spanned by the strict transforms of the trisecants of the curve

C6. Furthermore, we have the following commutative diagram:

X
π

��

π ′

  
P3 χ // P3

(3)

where χ is the birational map given by the linear system consisting of all cubic surfaces

containing C6. Note that the curves C6 and C′
6 are isomorphic, but not necessarily projectively

isomorphic.

We can find the equations of the curves C6 and C′
6 as follows. Rewrite (2) as

L10y0 +L11y1 +L12y2 +L13y3 = 0,

L20y0 +L21y1 +L22y2 +L23y3 = 0,

L30y0 +L31y1 +L32y2 +L33y3 = 0,
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where the Li j ’s are linear functions in x0, x1, x2, x3. Set

M =

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33

 .

Let f0, f1, f2, f3 be the determinants of the 3× 3 matrices obtained from the matrix M by

removing its first, second, third, fourth columns, respectively. Then C6 = { f0 = 0, f1 = 0, f2 =

0, f3 = 0}, and the birational map χ : P3 99K P3 in the diagram (3) is given by

[x0 : x1 : x2 : x3] 7→
[

f0 : f1 : f2 : f3
]

up to a composition with an automorphism of the projective space P3. Similarly, one can also

describe the defining equations of the sextic curve C′
6.

Example 44 ((Araujo et al., 2023b, Section 5.4),(W. L. Edge, 1947, (3.4))). Let

X =
{

x0y1+x1y0−
√

2x2y2 = 0,x0y2+x2y0−
√

2x3y3 = 0,x0y3+x3y0−
√

2x1y1 = 0
}
⊂P3×P3.

Then X is a smooth Fano threefold in the family №2.12, the curve C6 is given by

2
√

2x1x2x3 − x3
0 = 0,

x2
0x1 +

√
2x0x2

2 +2x2x2
3 = 0,

x2
0x2 +

√
2x0x2

3 +2x2
1x3 = 0,

x2
0x3 +

√
2x0x2

1 +2x1x2
2 = 0,

and C′
6 is given by the same equations replacing each xi by yi. One has Aut(X)≃ PSL2(F7)×

Z2, and X is the only smooth Fano threefold in the deformation family №2.12 that admits

a faithful action of PSL2(F7) (see Corollary 6.4.12). The map χ in (3) can be chosen to be an

involution.

The following result has been proven in Araujo et al. (2023b).

Theorem 6.1.1 ((Araujo et al., 2023b, § 5.4)). Let X be the Fano threefold from Example 44.

Then X is K-stable.

Hence, a general member of the family №2.12 is K-stable, since K-stability is an open condi-

tion. We expect that every smooth Fano threefold in this family is K-stable. To show this, it is

enough to prove that

β (F) = AX(F)−SX(F)> 0
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for every prime divisor F over X , see Fujita (2019); Li (2017), where AX(F) is the log discrep-

ancy of the divisor F, and

SX
(
F
)
=

1
(−KX)3

∞∫
0

vol
(
−KX −uF

)
du.

Unfortunately, we are unable to prove this result at the moment. Instead, we prove a weaker

result. To state it, let E be the π-exceptional surface, and let E ′ be the π ′-exceptional surface.

Theorem A. Let F be a prime divisor over X such that β (F) ⩽ 0, and let Z be its center on

X . Then Z is a point in the intersection E ∩E ′.

Let us present applications of this result. Since Aut(X) is finite, see Cheltsov, Przyjalkowski,

and Shramov (2018), the threefold X is K-polystable if and only if it is K-stable. Thus, by

(Zhuang, 2021, Corollary 4.14) and (Araujo et al., 2023b, Corollary 1.1.6), Theorem A implies

Corollary 6.1.2. If Aut(X) does not fix any point in E ∩E ′, then X is K-stable.

Since the action of the group Aut(P3,C6) lifts to X , Corollary 6.1.2 implies

Corollary 6.1.3. If Aut(P3,C6) does not fix a point in C6, then X is K-stable.

Since the group Aut(P3,C6) acts faithfully on the curve C6, Corollary 6.1.3 implies the following

generalization of Theorem 6.1.1, which has more applications (see Section 6.2).

Corollary 6.1.4. If Aut(P3,C6) is not cyclic, then X is K-stable.

Proof. If the group Aut(P3,C6) fixes a point P ∈ C6, it acts faithfully on the one-dimensional

tangent space to the curve C6 at the point P by (Flenner & Zaidenberg, 2005, Lemma 2.7), so

that Aut(P3,C6) is cyclic.

What do we know about Aut(X)? As we already mentioned above, this group is finite, by

Cheltsov et al. (2018), and we have the following exact sequence:

1 → Aut
(
P3,C6

)
→ Aut(X)→ Z2,

where Aut(P3,C6) ≃ Aut(C, [D]), and the final homomorphism is surjective if and only if

Aut(X) has an element that swaps E and E ′. For instance, if X is the smooth Fano threefold

from Example 44, then the group Aut(X) contains such an element — it is the involution

given by

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
,

which implies that Aut(X) ≃ PSL2(F7)× Z2 in this case. In Section 6.4, we will discuss

the possibilities for the group Aut(X) in more detail. In particular, we will present a criterion

when Aut(X) contains an element that swaps E and E ′, and we will prove the following result

(cf. (Wei & Yu, 2020, Theorem 1.1)).
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Theorem B. A finite group G has a faithful action on a smooth Fano threefold in the deform-

ation family №2.12 if and only if G is isomorphic to a subgroup of PSL2(F7)×Z2 or Z2
4 ⋊S3.

As we mentioned in Example 44, the family №2.12 contains a unique smooth Fano threefold

that admits a faithful action of the group PSL2(F7). Similarly, we prove in Section 6.4 that

the deformation family №2.12 contains a unique smooth threefold that admits a faithful action

of the group Z2
4 ⋊Z3, and the full automorphism group of this threefold is Z2

4 ⋊S3.

Remark 6.1.5. Let G be a subgroup in Aut(X). If G has an element that swaps the surfaces

E and E ′, then X is a G-Mori fiber space (over a point), and X is also known as a G-Fano

threefold (see Y. Prokhorov (2013)). In this case, it is natural to ask the following three nested

questions:

1. Is there a G-equivariant birational map X 99K P3? cf. Cheltsov, Tschinkel, and Zhang

(2024); Ciurca et al. (2024); Kuznetsov and Prokhorov (2021).

2. Is X G-solid? cf. Cheltsov and Sarikyan (2022); Pinardin (2024).

3. Is X G-birationally rigid? cf. Cheltsov and Shramov (2016a).

Inspired by (Kuznetsov & Prokhorov, 2021, Corollary 6.11), we conjecture that the answer to

the first question is always negative. If G ≃ PSL2(F7)×Z2, then X is G-birationally rigid by

(Araujo et al., 2023b, Theorem 5.23), so, in particular, it is G-solid. We believe that X is also

G-birationally rigid if G ≃ Z2
4 ⋊S3.

To consider more applications of Theorem A, let k be a subfield in C such that C6 is defined over k.

Then X and the Sarkisov link (3) are defined over k. In particular, the curve C′
6 is defined

over k. Moreover, it follows from Benoist and Wittenberg (2019); Lauter (2001) that C′
6 and

C6 are isomorphic over k, which can be shown directly. By (Zhuang, 2021, Corollary 4.14),

Theorem A implies the following corollaries.

Corollary 6.1.6. If E ∩E ′ does not have k-points, then X is K-stable.

Corollary 6.1.7. If C6 does not have k-points, then X is K-stable.

Using (Zhuang, 2021, Corollary 4.14), we also obtain the following.

Corollary 6.1.8. Every smooth Fano threefold in the deformation family №2.12 which is defined

over a subfield of the field C and does not have points in this subfield is K-stable.

We will present applications of Corollaries 6.1.7 and 6.1.8 in Section 6.2.

Acknowledgements. We started this project in Auckland (New Zealand) back in Decem-

ber 2022 during Ivan Cheltsov and Antoine Pinardin’s visit, which has been supported by

the Leverhulme Trust grant RPG-2021-229. Ivan Cheltsov has also been supported by EPSRC

grant Number EP/Y033485/1, and Simons Collaboration grant Moduli of varieties. Oliver Li is

supported by the Australian Commonwealth Government.

We would like to thank Harry Braden, Dougal Davis, Linden Disney-Hogg, Tim Dokchitser,

Igor Dolgachev, Sasha Kuznetsov, Joe Malbon, Yuri Prokhorov, Giorgio Ottaviani, Costya

Shramov, Yuyang Zhou and Ziheng Zhou for their help in this project.



6.2. Examples 173

6.2 Examples

6.2.1 S4-invariant curves

Let

M1 =


0 a 1 0

a 0 0 −1

1 0 0 a

0 −1 a 0

 ,M2 =


0 1 0 a

1 0 a 0

0 a 0 −1

a 0 −1 0

 ,M3 =


0 0 a −1

0 0 1 a

a 1 0 0

−1 a 0 0

 ,

where a∈C satisfies a(a6−1)(a2+1) ̸= 0. Consider the plane quartic curve C ⊆P2
x,y,z defined

by

det(xM1 + yM2 + zM3) = x4 + y4 + z4 +λ (x2y2 + x2z2 + y2z2) = 0, (4)

where λ =− 2a4+2
(a2+1)2 , cf. (W. Edge, 1938, § 14). One easily checks that C is smooth.

Now let X be the complete intersection in P3 ×P3 given by:

(x0,x1,x2,x3)M1


y0

y1

y2

y3

= (x0,x1,x2,x3)M2


y0

y1

y2

y3

= (x0,x1,x2,x3)M3


y0

y1

y2

y3

= 0 (5)

We claim that X is a smooth Fano threefold in the deformation family №2.12. Indeed, reverting

to the notation in Section 6.1, set

M =

ax1 + x2 ax0 − x3 ax3 + x0 ax2 − x1

ax3 + x1 ax2 + x0 ax1 − x3 ax0 − x2

ax2 − x3 ax3 + x2 ax0 + x1 ax1 − x0

 ,

and set C6 = { f0 = 0, f1 = 0, f2 = 0, f3 = 0} for

f0 = (1−a3)x3
0 − (2a2 +2a)x2

0x1 +(2a2 +2a)x2
0x2+

+(2a2 +2a)x2
0x3 +(a3 −1)x0x2

1 − (2a2 −2a)x0x1x2 − (2a2 −2a)x0x1x3+

+(a3 −1)x0x2
2 +(2a2 −2a)x0x2x3 +(a3 −1)x0x2

3 − (2a3 +2)x1x2x3,

f1 = (1−a3)x2
0x1 +(−2a2 −2a)x0x2

1 +(2a2 −2a)x0x1x2−

− (2a2 −2a)x0x1x3 +(2a3 +2)x0x2x3 +(a3 −1)x3
1 +(2a2 +2a)x2

1x2−

− (2a2 +2a)x2
1x3 +(−a3 +1)x1x2

2 +(2a2 −2a)x1x2x3 +(1−a3)x1x2
3,
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f2 = (a3 −1)x2
0x2 − (2a2 −2a)x0x1x2 − (2a3 +2)x0x1x3+

+(−2a2 −2a)x0x2
2 − (2a2 −2a)x0x2x3 +(a3 −1)x2

1x2 +(2a2 +2a)x1x2
2+

+(2a2 −2a)x1x2x3 +(1−a3)x3
2 +(2a2 +2a)x2

2x3 +(a3 −1)x2x2
3,

f3 = (1−a3)x2
0x3 +(2a3 +2)x0x1x2 − (2a2 −2a)x0x1x3−

− (2a2 −2a)x0x2x3 +(2a2 +2a)x0x2
3 +(1−a3)x2

1x3 − (2a2 −2a)x1x2x3+

+(2a2 +2a)x1x2
3 +(1−a3)x2

2x3 +(2a2 +2a)x2x2
3 +(a3 −1)x3

3.

Then it follows from (Ottaviani, 2024, §4.2) that C6 is isomorphic to the smooth plane quartic

C, which implies the claim. Moreover, it follows from Dolgachev (2012) that

Aut(C6)≃


S4 if λ ̸= 0 and λ

2 +3λ +18 ̸= 0,

Z2
4 ⋊S3 if λ = 0,

PSL2(F7) if λ
2 +3λ +18.

If λ 2 +3λ +18 = 0, then C6 is isomorphic to the Klein quartic curve.

Lemma 6.2.1. The group Aut(P3,C6) contains a subgroup isomorphic to S4.

Proof. Let G be the subgroup in PGL4(C) that is generated by the following transformations:
0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 ,


0 0 i 0

0 0 0 −i

−i 0 0 0

0 i 0 0

 ,


1 −3 −1 1

−3 −1 1 1

−1 1 −3 1

1 1 1 3

 ,


−3 −1 1 1

−1 1 −3 1

1 −3 −1 1

1 1 1 3

 .

Then, using the same Magma code used in Cheltsov and Sarikyan (2022), we see that G ≃
S4. Now G, acting on the matrix

A = xM1 + yM2 + zM3

via g ·A= gAgT , preserves the quartic (4), thus the curve C6 is G-invariant (see also (Ottaviani,

2024, §4.2)).

Corollary 6.2.2. If λ ̸= 0 and λ 2 +3λ +18 ̸= 0, then Aut(P3,C6)≃S4.

Similarly, we prove

Lemma 6.2.3. The group Aut(X) contains a subgroup isomorphic to S4 ×Z2.
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Proof. Let G be the subgroup in PGL4(C) that is defined in the proof of Lemma 6.2.1. Then

G ≃S4, the group G acts diagonally on P3 ×P3, and X is G-invariant. This gives an embed-

ding S4 ↪→ Aut(X). Moreover, since the matrices M1, M2, M3 are symmetric, the involution

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
leaves X invariant and commutes with the S4-action, which implies the result.

Corollary 6.2.4. If λ ̸= 0 and λ 2 +3λ +18 ̸= 0, then Aut(X)≃S4 ×Z2.

Applying Corollary 6.1.4, we conclude that the Fano threefold X is K-stable.

6.2.2 Z2
4 ⋊Z3-invariant curve

Let Ĝ be the subgroup in GL4(C) generated by the matrices

M =


−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ,N =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 ,A=


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 ,B=


0 i 0 0

1 0 0 0

0 0 0 −i

0 0 1 0

 .

and let G be the image of the group Ĝ in PGL4(C) via the natural projection GL4(C) →
PGL4(C). Then Ĝ ≃ Z4.(Z2

4 ⋊Z3) and G ≃ Z2
4 ⋊Z3, and their GAP ID’s are [192,4] and

[48,3], respectively. Using Linton (2007) and (Adem & Milgram, 2013, Corollary 5.4), one can

check that H2(G,C∗)≃ Z4 and Ĝ is a covering group of the group G.

Lemma 6.2.5. Let G′ be a subgroup in PGL4(C) such that G′ ≃ G and G′ does not fix points

in P3. Then G′ is conjugate to G in PGL4(C).

Proof. The claim follows from (Cheltsov & Sarikyan, 2022, Lemma 2.7) and the classification

of finite subgroups in PGL4(C), which can be found in Blichfeldt (1917). Alternatively, one can

prove the required assertion analyzing irreducible representations of the group Ĝ, which can

be found in Dokchitser (n.d.).

The main goal of this subsection is to show that the projective space P3 contains a G-invariant

irreducible smooth non-hyperelliptic curve of degree 6 and genus 3, and this curve is unique up

to the action of the normalizer of the group G in PGL4(C). First, let us describe the normalizer.

Set

C±
4 =

{(
1∓

√
3i
)
x2

1 − (1±
√

3i)x2
2 +2x2

3 = 0,2x2
0 − (1±

√
3i)x2

1 −
(
1∓

√
3i
)
x2

2 = 0
}
⊂ P3.

Then C±
4 is a G-invariant smooth elliptic curve, and

Aut(P3,C±
4 )≃ Aut

(
C±

4 ,
[
OP3(1)

∣∣
C±

4

])
.
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This implies that Aut(P3,C±
4 ) must be one of the following finite groups: Z2

4⋊Z2, Z2
4⋊Z4, Z2

4⋊
Z6. On the other hand, one can check that Aut(P3,C±

4 ) contains the subgroup in PGL4(C)
generated by

−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ,


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 ,


0 i 0 0

1 0 0 0

0 0 0 i

0 0 1 0

 .

This subgroup has GAP ID [96,72], and it is isomorphic to Z3
2.A4 ≃ Z2

4 ⋊Z6. Hence, we

conclude that Aut(P3,C±
4 )≃ Z3

2.A4. Let G192,185 be the subgroup in PGL4(C) generated by
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ,


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1

 ,


0 0 0 1

i 0 0 0

0 1 0 0

0 0 1 0

 ,


0 i 0 0

−i 0 0 0

0 0 i 0

0 0 0 1

 .

Then its GAP ID is [192,185]. Note that Aut(P3,C±
4 )◁ G192,185 ≃ Z3

2.S4 and G ◁ G192,185.

Lemma 6.2.6. The normalizer in PGL4(C) of the subgroup G is the subgroup G192,185.

Proof. This follows from the fact that the curve C+
4 +C−

4 is G192,185-invariant.

Let us describe G-orbits in P3 of length less than 48. To do this, we let

Σ4 = OrbG
(
[1 : 0 : 0 : 0]

)
,

Σ12 = OrbG
(
[1+ i :

√
2 : 0 : 0]

)
,

Σ
′
12 = OrbG

(
[1− i :

√
2 : 0 : 0]

)
,

Σ16 = OrbG
(
[−1+

√
3i : −1−

√
3i : 2 : 0]

)
,

Σ
′
16 = OrbG

(
[−1−

√
3i : −1+

√
3i : 2 : 0]

)
,

Σ
u
16 = OrbG

(
[1 : 1 : 1 : u]

)
for u ∈ C,

Σ
t
24 = OrbG

(
[2 : t : 0 : 0]

)
for t ∈ C such that t ̸= 0 and t ̸=±

√
2±

√
2i.

Then Σ4, Σ12, Σ′
12, Σ16, Σ′

16, Σu
16, Σt

24 are G-orbits of length 4, 12, 12, 16, 16, 16, 24, respect-

ively.

Lemma 6.2.7. Let Σ be a G-orbit in P3 such that |Σ|< 48. Then Σ is one of the G-orbits

Σ4, Σ12, Σ′
12, Σ16, Σ′

16, Σu
16, Σt

24,

where u ∈ C and t ∈ C such that 0 ̸= t ̸=±
√

2±
√

2i.
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Proof. Let us describe subgroups of the group G. To do this, identify the matrices M, N, A, B

with their images in PGL4(C). Set

C = ANBMA2 =


0 0 0 1

0 0 1 0

0 i 0 0

−i 0 0 0

 .

Using the description of conjugacy classes of the subgroups of G, accessible with the GAP

ID [48,3], for example on the webpage Dokchitser (n.d.), we see that all proper subgroups of

the group G can be described as follows:

(i) ⟨B,C⟩ ≃ Z2
4 is the unique (normal) subgroup of order 16,

(ii) ⟨A,M,N⟩ ≃ A4 is one of four conjugated subgroups of order 12,

(iii) ⟨B,M,N⟩ ≃ Z2 ×Z4 is one of three conjugated subgroups of order 8,

(iv) ⟨M,N⟩ ≃ Z2
2 is the unique (normal) subgroup isomorphic to Z2

2,

(v) ⟨B⟩ ≃Z4 and ⟨CB⟩ ≃Z4 are non-conjugate subgroups. Their conjugacy classes consist

of three subgroups, which are all subgroups of the group G isomorphic to Z4,

(vi) ⟨A⟩ ≃ Z3 is one of sixteen conjugated subgroups of order 3,

(vii) ⟨M⟩ ≃ Z2 is one of three conjugated subgroups of order 2.

Now, let Γ be the stabilizer in G of a point in Σ. Then Γ is a proper subgroup of the group

G, since G fixes no points in P3. So, we may assume that Γ is one of the subgroups ⟨B,C⟩,
⟨A,M,N⟩, ⟨B,M,N⟩, ⟨M,N⟩, ⟨B⟩, ⟨CB⟩, ⟨A⟩, ⟨M⟩. On the other hand, one can check that

(i) ⟨B,C⟩ does not fix points in P3,

(ii) the only fixed point of ⟨A,M,N⟩ is the point [1 : 0 : 0 : 0] ∈ Σ4,

(iii) ⟨B,M,N⟩ does not fix points in P3,

(iv) ⟨M,N⟩ does not fix points in P3 \Σ4,

(v) the only fixed point of ⟨B⟩ are the points

[1+ i :
√

2 : 0 : 0], [1+ i : −
√

2 : 0 : 0], [0 : 0 :
√

2 : 1+ i], [0 : 0 : −
√

2 : 1+ i],

which are contained in Σ12, and the only fixed point of ⟨CB⟩ are the points

[
√

2 : 0 : 1− i : 0], [−
√

2 : 0 : 1− i : 0], [0 :
√

2 : 0 : 1− i], [0 : −
√

2 : 0 : 1− i],

which are contained in the G-orbit Σ′
12,

(vi) the only fixed points of ⟨A⟩ are the points

– [−1+
√

3i : −1−
√

3i : 2 : 0] ∈ Σ16,

– [−1−
√

3i : −1+
√

3i : 2 : 0] ∈ Σ′
16,

– [1 : 1 : 1 : t] ∈ Σt
16 for any t ∈ C,

– [0 : 0 : 0 : 1] ∈ Σ4,



6.2. Examples 178

(vii) all fixed points of ⟨M⟩ are contained in the lines {x0 = x1 = 0} and {x2 = x3 = 0}.

This implies the required assertion.

Now, we are ready to present a G-invariant irreducible smooth curve in P3 of degree 6 and

genus 3. For every u ∈ C such that u ̸= 0, let M u
3 be the linear subsystem in |OP3(3)| that

consists of all cubic surfaces passing through the G-orbit Σu
16. If u4 = −3, then the linear

system M u
3 is 7-dimensional, and its base locus consists of one of the two elliptic curves C+

4

or C−
4 . On the other hand, if u4 ̸= −3, then M u

3 is 3-dimensional. In this case, solving the

corresponding system of 16 linear equations, we see that the base locus of the linear system

M u
3 is given by the following equations:

f1 = f2 = f3 = f4 = 0, (6)

where

f1 =(u4 −1)x3x2
0 +(u4 +3)x0x1x2u+(u4 −1)x3x2

1 −4x3
3u2 +(u4 −1)x2

2x3 = 0,

f2 =(u4 −1)x1x2
0 −u(u4 +3)x0x2x3 +4u2x3

1 − (u4 −1)x1x2
2 +(u4 −1)x2

3x1 = 0,

f3 =4u2x3
0 − (u4 −1)x0x2

1 +(u4 −1)x0x2
2 +(u4 −1)x2

3x0 −u(u4 +3)x1x2x3 = 0,

f4 =(u4 −1)x2x2
0 +u(u4 +3)x0x1x3 − (u4 −1)x2x2

1 −4u2x3
2 − (u4 −1)x2

3x2 = 0.

Using Maple or Mathematica, we can also eliminate variables x2 and x3 in (6). This gives

(u12 +17u8 +43u4 +3)F = 0,

where F is non-zero polynomial in C[u,x0,x1] such that F is not divisible by any polynomial

in C[u]. Thus, if u is not a root of u12 + 17u8 + 43u4 + 3, then the base locus of M u
3 is zero-

dimensional, and one can check the converse is true. So, the base locus of M u
3 is zero-

dimensional unless u4 =−3 or

u ∈

{
−1±

√
3

2
+

1∓
√

3
2

i,
−1±

√
3

2
+
−1±

√
3

2
i,

1±
√

3
2

+
1±

√
3

2
i,

1∓
√

3
2

+
−1±

√
3

2
i

}
.

Now, if u = −1±
√

3
2 + 1∓

√
3

2 i, u = −1±
√

3
2 + −1±

√
3

2 i, u = 1±
√

3
2 + 1±

√
3

2 i or u = 1∓
√

3
2 + −1±

√
3

2 i,

then the system of equations (6) defines an irreducible G-invariant smooth curve of degree

6 and genus 3. We will denote these curves by C6, C′
6, C′′

6 , C′′′
6 , respectively. To be precise, we

have

C6 =



(x2
0 + x2

1 + x2
2)x3 − ix3

3 − (1− i)x1x0x2 = 0,

(x2
0 − x2

2 + x2
3)x1 + ix3

1 +(1− i)x3x0x2 = 0,

(x2
1 − x2

2 − x2
3)x0 − ix3

0 − (1− i)x1x3x2 = 0,

(x2
0 − x2

1 − x2
3)x2 − ix3

2 − (1− i)x1x3x0 = 0,
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and C′
6, C′′

6 , C′′′
6 can be obtained from C6 applying elements of the normalizer G192,185.

Fix u = −1±
√

3
2 + 1∓

√
3

2 i. Then (6) defines C6. Choosing a different basis of the linear system

M u
3 , we obtain a birational map ι : P3 99K P3 given by [x0 : x1 : x2 : x3] 7→ [h0 : h1 : h2 : h3] for

h0 = (1+ i)x3x0x2 − x3
1 + ix1(x2

0 − x2
2 + x2

3),

h1 = (1+ i)x3x1x2 − x3
0 − ix0(x2

1 − x2
2 − x2

3),

h2 = (1+ i)x3x0x1 − x3
2 − ix2(x2

0 − x2
1 − x2

3),

h3 = (i−1)x1x0x2 − ix3
3 + x3(x2

0 + x2
1 + x2

2).

One can check that ι is a birational involution, and we have the following G-commutative

diagram:

X

π

��

τ // X

π

��
P3

ι
// P3

where π is the blow up of the curve C6, and τ is an involution. Then X is a smooth Fano

threefold in the deformation family №2.12, which can be defined as complete intersection in

P3 ×P3 given by
y3x0 − y2x0 + iy2x1 + y3x1 − y0x2 + iy1x2 + y0x3 + y1x3 = 0,

iy0x0 − y1x1 + y3x2 + y2x3 = 0,

y2x0 + y3x0 + iy2x1 − y3x1 − y0x2 − iy1x2 − y0x3 + y1x3 = 0,

and π is induced by the projection to the first factor, where ([x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3])

are coordinates on P3 ×P3. Thus, in the notations in Section 6.1, we have

M1 =


0 0 −1 1

0 0 i 1

−1 i 0 0

1 1 0 0

 ,M2 =


i 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 0

 ,M3 =


0 0 1 1

0 0 i −1

−1 −i 0 0

−1 1 0 0

 .

Note that M1 and M2 are symmetric, M3 is skew-symmetric, and the involution τ is given by

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
,

Corollary 6.2.8. One has Aut(P3,C6) = G and Aut(X)≃ Z2
4 ⋊S3.
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Proof. First, using the classification of automorphism groups of smooth curves of genus three,

see Bars Cortina (2006); Dolgachev (2012), we see that C6 is isomorphic to the Fermat quartic

curve in P2. This can also be shown directly. Namely, it follows from Ottaviani (2024) that C6

is isomorphic to the plane quartic curve

{
det(xM1 + yM2 + zM3) = 0

}
⊂ P2

x,y,z,

which is projectively isomorphic to the Fermat plane quartic curve.

We conclude that Aut(C6)≃ Z2
4⋊S3. Therefore, if Aut(P3,C6) ̸= G, then Aut(P3,C6)≃ Z2

4⋊
S3, and the subgroup Aut(P3,C6) ⊂ PGL4(C) is contained in the normalizer of the group G

in PGL4(C), which is impossible since the normalizer is the group G192,185 by Lemma 6.2.6,

and G192,185 does not contain subgroups isomorphic to Z2
4 ⋊S3.

Therefore, we conclude that Aut(P3,C6) = G. Now, one can explicitly check that ⟨G,τ⟩ ≃
Z2

4 ⋊S3, where we consider G as a subgroup in Aut(X). This gives Aut(X)≃ Z2
4 ⋊S3.

By Corollary 6.1.4, the smooth Fano threefold X is K-stable.

In Section 6.4, we will see that X is the unique smooth Fano threefold in the family №2.12

whose automorphism group is isomorphic to the group Z2
4 ⋊S3. To do this, we need the fol-

lowing result:

Theorem 6.2.9. The only G-invariant irreducible smooth curves in P3 of degree 6 are C6, C′
6,

C′′
6 , C′′′

6 .

Proof. Let C be a G-invariant irreducible smooth curve in P3 of degree 6, and let g be its

genus. Then g ⩽ 4 by the Castelnuovo bound. Thus, it follows from Breuer (2000); Paulhus

(2019) that either g = 1, or g = 3.

Note that Σ4 ̸⊂C, because stabilizers in G of points in C are cyclic by (Flenner & Zaidenberg,

2005, Lemma 2.7).

Let Π = {x3 = 0}, and let Γ be the the stabilizer of this plane in G. Then Γ = ⟨M,N,A⟩ ≃ A4,

and all Γ-orbits in Π of length less than 12 can be described as follows:

1. Σ4 ∩Π is the unique Γ-orbit of length 3,

2. Σ12 ∩Π is a Γ-orbit of length 6,

3. Σ′
12 ∩Π is a Γ-orbit of length 6,

4. Σt
24 ∩Π consists in two Γ-orbits of length 6, where 0 ̸= t ̸=±

√
2±

√
2i,

5. Σ16 ∩Π, Σ′
16 ∩Π and Σ0

16 ∩Π are Γ-orbits of length 4.

Thus, since Σ4 ̸⊂ C, C ̸⊂ Π, and Π ·C is a Γ-invariant effective one-cycle of degree 6, we

conclude that C contains at least one of the orbits Σ12 or Σ′
12, and C does not contain Σ16, Σ′

16

and Σ0
16.
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If g= 1, it follows from Breuer (2000); Paulhus (2019) that C does not contain G-orbits of length

12, which gives g = 3. Then it follows from Breuer (2000); Paulhus (2019) that C contains two

G-orbits of length 16, so Σt
16 ⊂C for some t ̸= 0.

Using the classification of automorphism groups of smooth curves of genus three, see Bars Cor-

tina (2006); Dolgachev (2012), we see that the curve C is isomorphic to the Fermat quartic

curve in P2. Hence, the curve C is not hyperelliptic.

Let M3 be the linear subsystem in |OP3(3)| that consists of all cubic surfaces passing through C.

Then M3 is three-dimensional, and the curve C is its base locus by Homma (1980), because

C is not hyperelliptic. Therefore, using the notations introduced earlier, we see that M3 =M t
3

for an appropriate t ∈ C. Now, arguing as above, we see that

t ∈

{
−1±

√
3

2
+

−1±
√

3
2

i,
−1±

√
3

2
+

1∓
√

3
2

i,
1±

√
3

2
+

1±
√

3
2

i,
1∓

√
3

2
+

−1±
√

3
2

i

}
,

which implies that C is one of the curves C6, C′
6, C′′

6 , C′′′
6 as claimed.

6.2.3 Curves over Q without rational points

Let us use notations introduced in Section 6.1. Suppose, in addition, that

C = {x4 + xyz2 + y4 + y3z−31yz3 +4z4 = 0} ⊂ P2
x,y,z.

Then C is smooth. One can show that C(Q) =∅ using the reduction modulo 3. Set

P1 = [1− i : 0 : 1],P2 = [1+ i : 0 : 1],P3 = [−1+ i : 0 : 1],P4 = [−1− i : 0 : 1].

and D = 3(P3 +P4)−KC. Then D is defined over Q and D satisfies (1). The later condition

can be checked using the following Magma code:

Q<i>:=QuadraticField(-1);

P2<x,y,z>:=ProjectiveSpace(Q,2);

X:=Scheme(P2,[x^4+x*y*z^2+y^4+y^3*z-31*y*z^3+4*z^4]);

C:=Curve(X);

P3:=C![-1-i,0,1];

P4:=C![-1+i,0,1];

D3:=Divisor(P3);

D4:=Divisor(P4);

D:=3*D3+3*D4-CanonicalDivisor(C);

Dimension(D);

Then C6 is defined over Q, and it is isomorphic to C over Q. In particular, the curve C6 does not

contain Q-rational points. Hence, by Corollary 6.1.7, the smooth Fano threefold X is K-stable.
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One can explicitly find defining equations of C6 as follows. Let M be the linear system of cubic

curves in P2 whose general member is tangent to C with multiplicity 3 at the points P1 and P2.

Then

M
∣∣
C = 3P1 +3P2 + |3(P3 +P4)|.

Thus, to compute the embedding C ↪→ P3, it is enough to find a basis of the linear system

M , which can be done using linear algebra. After this, it is easy to find defining equations of

the curve C6.

6.2.4 Real pointless threefolds

Now, we explain how to construct real smooth Fano threefolds in the deformation family №2.12

that do not have real points. By Corollary 6.1.8, all of them are K-stable. We start with the

following example.

Example 45. Let U be a three-dimensional Severi–Brauer variety defined over R such that

U ̸≃ P3
R. Recall from Gille and Szamuely (2017); Kollár (2016) that U exists, it is unique, and,

in particular, it is isomorphic to its dual variety. Set W =U ×U . Then

WC ≃ P3 ×P3.

Since U ≃ U∨, the Picard group PicR(W ) contains a real line bundle L such that LC has

degree (1,1). Let V be any smooth complete intersection of three divisors in |L|. Then V is

a smooth Fano threefold in the family №2.12, and V does not have real points, because W

does not have real points.

Let us present another, more explicit, construction of pointless real smooth Fano threefolds in

the deformation family №2.12. For a point P = ([x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]) ∈ P3 ×P3, let

us consider the symmetric matrix

A =


a00 a01 a02 a03

a01 a11 a12 a13

a02 a12 a22 a23

a03 a13 a23 a33


and the skew-symmetric matrix

B =


0 b01 b02 b03

−b01 0 b12 b13

−b02 −b12 0 b23

−b03 −b13 −b23 0


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defined (up to a common scalar multiple) as follows:

anm =
xnym + xmyn

2

and

bnm =
xnym − xmyn

2i

for every n ∈ {0,1,2,3} and m ∈ {0,1,2,3} such that n ̸= m, and ann = xnyn for each n ∈
{0,1,2,3}. Set M = A+ iB. Then

M =


x0y0 x0y1 x0y2 x0y3

x1y0 x1y1 x1y2 x1y3

x2y0 x2y1 x2y2 x2y3

x3y0 x3y1 x3y2 x3y3

 .

Therefore, we see that the constructed map P 7→ M gives us the Serge embedding P3×P3 ↪→
P15, where we consider P15 as a projectivization of the vector space of all 4×4 matrices.

Now, we consider matrices A and B on their own, and we also assume that all anm and bnm are

real. Then M is a Hermitian 4× 4 matrix. Projectivizing the vector space of Hermitian 4× 4

matrices, we obtain P15
R with coordinates [a00 : a01 : · · · : b13 : b23]. Let us consider M as a

point in P15
R , and set

V =
{

M ∈ P15
R
∣∣ rank(M)⩽ 1

}
⊂ P15

R .

Then V is a real projective subvariety in P15
R . Moreover, over C, the subvariety VC is the im-

age of the map P 7→ M constructed above, which implies that VC ≃ P3 × P3, so V is a

form of P3
R × P3

R. But V ̸≃ P3
R × P3

R over R, because V is the Weil restriction of P3 over

the reals (cf.(Gorchinskiy & Shramov, 2015, Exercise 8.1.6)), which implies that V (R) ̸= ∅,

and PicR(V ) is generated by the class of a hyperplane section.

Now, let H1, H2, H3 be three real hyperplane sections of V ⊂ P15
R . Set X = H1∩H2∩H3. Sup-

pose that X is smooth and three-dimensional. Then X is a real form of a smooth Fano threefold

in the deformation family №2.12 such that PicR(X) =Z[−KX ]. Moreover, Corollary 6.1.8 gives

the following.

Corollary 6.2.10. If X does not have real points, then X is K-stable.

Such smooth Fano threefolds without real points do exist:

Example 46. Suppose that H1 is cut out by a00 + a11 + a22 + a33 = 0. Then H1 is smooth,

because its preimage in P3 ×P3 via the map constructed above is given by

x0y0 + x1y1 + x2y2 + x3y3 = 0.
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We claim the fivefold H1 does not have real points. It will be sufficient to show that if M ∈ V ,

then the corresponding real numbers a00, a11, a22, a33 are either all non-negative or all non-

positive and cannot be all zero. To this end, note that for any n < m, by the rank assumption

on M we have

annamm = (anm + ibnm)(anm − ibnm) = |anm|2 + |bnm|2 ≥ 0.

In particular, ann and amm cannot have differing signs. Moreover, if all the ann were zero, then

that would imply |anm|2+ |bnm|2 = 0 for all n < m too, which in turn implies M = 0. This cannot

happen. Thus, they cannot be all zero.

Similarly, set H2 = {a03 + 2a12 = 0} ∩V and H3 = {a02 + a13 + a23 = 0} ∩V . Then VC is

isomorphic to the complete intersection in P3 ×P3 given by
x0y0 + x1y1 + x2y2 + x3y3 = 0,

x0y3 + x3y0 +2x1y2 +2x2y1 = 0,

x0y2 + x2y0 + x3y1 + x1y3 + x2y3 + x3y2 = 0.

This complete intersection is a smooth threefold, so X is smooth, and it has no real points,

because the divisor H1 does not have real points.

6.3 The proof of Theorem A

Let us use all the notation and assumptions introduced in Section 6.1. To start with, we will

present some results from Abban and Zhuang (2022); Araujo et al. (2023a) that will be used

in the proof of Theorem A. Let F be a prime divisor over X , and let Z be its center on X .

Suppose that

• either Z is a point,

• or Z is an irreducible curve.

Let P be any point in Z. Choose an irreducible smooth surface S ⊂ X such that P ∈ S. Set

τ = sup
{

u ∈Q⩾0
∣∣ the divisor −KX −uS is pseudo-effective

}
.

For u∈ [0,τ], let P(u) be the positive part of the Zariski decomposition of the divisor −KX −uS,

and let N(u) be its negative part. Then β (S) = 1−SX(S), where

SX(S) =
1

−K3
X

∞∫
0

vol
(
−KX −uS

)
du =

1
20

τ∫
0

P(u)3du.
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Let us show how to compute P(u) and N(u). Set H = π∗(OP3(1)) and H ′ = (π ′)∗(OP3(1)).

Then

H ∼ 3H ′−E ′,E ∼ 8H ′−3E ′,H ′ ∼ 3H −E,E ′ ∼ 8H −3E,

where E and E ′ are exceptional surfaces of the blow ups π and π ′, respectively. Since ρ(X) =

2, the Mori cone is spanned by two extremal rays, and it is clear that the rays spanned by the

fibers of E →C6 and E ′ →C′
6, say ℓ and ℓ′ do the trick. We have

H.ℓ= 0,E.ℓ=−1,H ′.ℓ= 1,E ′.ℓ= 3.

With this in mind:

Example 47. Suppose that S ∈ |H|. Then τ = 4
3 . Moreover, by considering intersection with

ℓ′ we have

P(u)∼R

(4−u)H −E for 0 ⩽ u ⩽ 1,

(4−3u)H ′ for 1 ⩽ u ⩽
4
3
,

and

N(u) =

0 for 0 ⩽ u ⩽ 1,

(u−1)E ′ for 1 ⩽ u ⩽
4
3
,

which gives SX(S) = 1
20

4
3∫

0

(
P(u)

)3du = 1
20

1∫
0
(2−u)(u2−10u+10)du+ 1

20

4
3∫

1
(4−3u)3du = 53

120 .

Example 48. Suppose that S = E. Then τ = 1
2 ,

P(u)∼R


4H − (1+u)E for 0 ⩽ u ⩽

1
3
,

(4−8u)H ′ for
1
3
⩽ u ⩽

1
2
,

and

N(u) =


0 for 0 ⩽ u ⩽

1
3
,

(3u−1)E ′ for
1
3
⩽ u ⩽

1
2
,

which gives SX(S) = 1
20

1
2∫

0
4(1−u)(5−7u2 −10u)du+ 1

20

1
3∫

1
2

64(1−2u)3du = 11
60 .

Now, we choose an irreducible curve C ⊂ S that contains the point P. For instance, if Z is

a curve, and S contains Z, then we can choose C = Z. Since S ̸⊂ Supp(N(u)), we can write

N(u)
∣∣
S = d(u)C+N′(u),
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where d(u)= ordC(N(u)|S), and N′(u) is an effective R-divisor on S such that C ̸⊂Supp(N′(u)).

Now, for every u ∈ [0,τ], we set

t(u) = sup
{

v ∈ R⩾0
∣∣ the divisor P(u)

∣∣
S − vC is pseudo-effective

}
.

For v ∈ [0, t(u)], we let P(u,v) be the positive part of the Zariski decomposition of P(u)|S−vC,

and we let N(u,v) be its negative part. Following Abban and Zhuang (2022); Araujo et al.

(2023a), we let

S
(
W S

•,•;C
)
=

3
(−KX)3

τ∫
0

d(u)
(

P(u)
∣∣
S

)2
du+

3
(−KX)3

τ∫
0

∞∫
0

vol
(
P(u)

∣∣
S − vC

)
dvdu,

which we can rewrite as

S
(
W S

•,•;C
)
=

3
(−KX)3

τ∫
0

d(u)
(

P(u)
∣∣
S

)2
du+

3
(−KX)3

τ∫
0

t(u)∫
0

(
P(u,v)

)2dvdu.

If Z is a curve, Z ⊂ S and C = Z, then it follows from (Araujo et al., 2023b, Corollary 1.110),

which is based on Abban and Zhuang (2022), that

AX(F)
SX(F)

⩾ min

{
1

SX(S)
,

1
S
(
W S

•,•;C
)}. (7)

Let f : S̃→ S be the blow up of the point P, let F be the f -exceptional curve, let Ñ′(u) be the strict

transform on S̃ of the R-divisor N(u)|S, and let d̃(u) = multP(N(u)|S). Then

f ∗
(
N(u)

∣∣
S

)
= d̃(u)F + Ñ′(u).

For every u ∈ [0,τ], set

t̃(u) = sup
{

v ∈ R⩾0
∣∣ the divisor f ∗

(
P(u)

∣∣
S

)
− vF is pseudo-effective

}
.

For v∈ [0, t̃(u)], we let P̃(u,v) be the positive part of the Zariski decomposition of f ∗(P(u)|S)−
vF , and let Ñ(u,v) be its negative part. Let

S
(
W S

•,•;F
)
=

3
(−KX)3

τ∫
0

d̃(u)
(

f ∗
(
P(u)

∣∣
S

))2
du+

3
(−KX)3

τ∫
0

∞∫
0

vol
(

f ∗
(
P(u)

∣∣
S

)
− vF

)
dvdu.

Then

S
(
W S

•,•;F
)
=

3
(−KX)3

τ∫
0

d̃(u)
(
P̃(u,0)

)2du+
3
20

τ∫
0

t̃(u)∫
0

(
P̃(u,v)

)2dvdu.
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For every point O ∈ F , we let

S
(
W S̃,F

•,•,•;O
)
=

3
(−KX)3

τ∫
0

t̃(u)∫
0

(
P̃(u,v) ·F

)2dvdu+FO
(
W S̃,F

•,•,•
)

for

FO
(
W S̃,F

•,•,•
)
=

6
(−KX)3

τ∫
0

t̃(u)∫
0

(
P̃(u,v) ·F

)
·ordO

(
Ñ′(u)

∣∣
F + Ñ(u,v)

∣∣
F

)
dvdu.

Then it follows from (Araujo et al., 2023b, Remark 1.113) that

AX(F)
SX(F)

⩾ min

{
1

SX(S)
,

2
S
(
W S

•,•;F
) , inf

O∈F

1

S
(
W S̃,F

•,•,•;O
)
}
. (8)

Thus, if SX(S)< 1, S(W S
•,•;F)< 2 and S(W S̃,F

•,•,•;O)< 1 for every point O ∈ F , then β (F)> 0.

Now, we are ready to prove Theorem A. We must show that β (F) > 0 if Z is not a point in

E ∩E ′. If Z is a surface, it follows from (Fujita, 2016, Theorem 10.1) that β (F)> 0. Hence, we

may assume that Z is not a surface.

Lemma 6.3.1 (cf. Cheltsov and Pokora (2023)). Suppose that Z is a curve, Z ⊂ E, and π(Z)

is not a point. Then β (F)> 0.

Proof. Let e be the invariant of the ruled surface E defined in Proposition 2.8 in (Hartshorne,

2013, Chapter V). Then e ⩾ −3, by Nagata (1970). Moreover, there exists a section C0 of

the projection E →C6 such that C2
0 =−e. Let ℓ a fiber of this projection. Then H|E ≡ 6ℓ and

E|E ≡−C0 +λℓ for some integer λ . Since

−28 =−c1
(
NC6/P3

)
= E3 = (−C0 +λℓ)2 =−e−2λ ,

we get λ = 28−e
2 , so e is even and e ⩾−2. Since H ′ is nef and H ′|E ≡C0 +(18−λ )ℓ, we get

0 ⩽ H ′ ·C0 =
(
C0 +(18−λ )ℓ

)
·C0 =

8− e
2

,

which implies that e ⩽ 8. Thus, we see that e ∈ {−2,0,2,4,6,8}.

Set S = E and C = Z. Let us estimate S(W S
•,•;C). It follows from Example 48 that τ = 1

2 and

P(u)
∣∣
S ≡


(1+u)C0 +

20+ e+ue−28u
2

ℓ for 0 ⩽ u ⩽
1
3
,

(4−8u)C0 +2(1−2u)(8+ e)ℓ for
1
3
⩽ u ⩽

1
2
.
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If 0 ⩽ u ⩽ 1
2 , then N(u) = 0. If 1

2 ⩽ u ⩽ 1
3 , then N(u)

∣∣
S = (3u− 1)E ′|S, where E ′|S ≡ 3C0 +

12+3e
2 ℓ. By Proposition 2.20 in (Hartshorne, 2013, Chapter V), we have Z ≡ aC0 + bℓ for

integers a and b such that a ⩾ 0 and b ⩾ ae. Since π(Z) is not a point, we have a ⩾ 1.

Then ordC(E ′|S) ⩽ 3, as can be seen by intersecting with ℓ. Hence, if 1
3 ⩽ u ⩽ 1

2 , then

d(u)⩽ 3(3u−1). This gives

S(W S
•,•;C) =

3
20

1
2∫

1
3

128(2u−1)2d(u)du+
3
20

1
2∫

0

∞∫
0

vol
(
P(u)

∣∣
S − vC

)
dvdu ⩽

⩽
3
20

1
2∫

1
3

384(3u−1)(2u−1)2du+
3
20

1
2∫

0

∞∫
0

vol
(
P(u)

∣∣
S − vC

)
dvdu =

=
2
45

+
3
20

1
2∫

0

∞∫
0

vol
(
P(u)

∣∣
S − vC

)
dvdu =

2
45

+
3
20

1
2∫

0

∞∫
0

vol
(
P(u)

∣∣
S − v(aC0 +bℓ)

)
dvdu.

Thus, we conclude that S(W S
•,•;C)⩽ 2

45 +
3

20

1
2∫

0

∞∫
0

vol
(
P(u)

∣∣
S − v(aC0 +bℓ)

)
dvdu.

Suppose that b ⩾ 0. Then

3
20

1
2∫

0

∞∫
0

vol
(
P(u)

∣∣
S − v(aC0 +bℓ)

)
dvdu ⩽

3
20

1
2∫

0

∞∫
0

vol
(
P(u)|S − vC0

)
dvdu.

On the other hand, we have

P(u)
∣∣
S − vC0 ≡


(1+u− v)C0 +

20+ e+ue−28u
2

ℓ if 0 ⩽ u ⩽
1
3
,

(4−8u− v)C0 +2(1−2u)(8+ e)ℓ if
1
3
⩽ u ⩽

1
2
.
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Hence, if 0 ⩽ u ⩽ 1
3 , then the divisor P(u)

∣∣
S − vC0 is pseudoeffective ⇐⇒ it is nef ⇐⇒

v ⩽ 1+ u. Likewise, if 1
3 ⩽ u ⩽ 1

2 , then P(u)
∣∣
S − vC0 is pseudoeffective ⇐⇒ it is nef ⇐⇒

v ⩽ 4−8u. Then

S(W S
•,•;C)⩽

2
45

+
3
20

1
2∫

0

∞∫
0

vol
(
P(u)|S − vC0

)
dvdu =

=
2

45
+

3
20

1
3∫

0

1+u∫
0

(
(1+u− v)C0 +

20+ e+ue−28u
2

ℓ

)2

dvdu+

+
3
20

1
2∫

1
3

4−8u∫
0

(
(4−8u− v)C0 +2(1−2u)(8+ e)ℓ

)2dvdu =
23e

1440
+

221
360

< 1,

because e ⩽ 8. Then β (F)> 0 by (7), since we know from Example 48 that SX(S)< 1.

Thus, to complete the proof, we may assume that b < 0. Then e < 0, so that e = −2, since

b ⩾ ae. Hence, from Proposition 2.21 in (Hartshorne, 2013, Chapter V) it follows that a ⩾ 2

and b ⩾−a. Then

3
20

1
2∫

0

∞∫
0

vol
(
P(u)|S − vC

)
dvdu ⩽

3
20

1
2∫

0

∞∫
0

vol
(
P(u)|S − v(2C0 −2ℓ)

)
dvdu.

Moreover, arguing as above, we compute

3
20

1
2∫

0

∞∫
0

vol
(
P(u)|S − v(2C0 −2ℓ)

)
dvdu =

41
144

,

which gives S(W S
•,•;C)⩽ 2

45 +
41

144 = 79
240 < 1, so that β (F)> 0 by (7).

Similarly, we prove that

Lemma 6.3.2. Suppose that Z is a curve, Z ⊂ E ′, and π ′(Z) is not a point. Then β (F)> 0.

Now, suppose that Z is not a point in E ∩E ′. To prove Theorem A, we must show that β (F)>
0. Let P be a general point in Z. By Lemmas 6.3.1 and 6.3.2, we may assume that either

P ̸∈ E or P ̸∈ E ′. Hence, without loss of generality, we may assume that P ̸∈ E. Let us show

that β (F)> 0.

Let S be a sufficiently general surface in |H| that contains P. Then it follows from the adjunction

formula that −KS ∼ H ′|S. Set Π = π(S). Then Π is a general plane in P3 that contains π(P).

Write

Π∩C6 =
{

P1,P2,P3,P4,P5,P6
}
,
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where P1, P2, P3, P4, P5, P6 are distinct points. Then π induces a birational morphism ϖ : S → Π,

which is a blow up of the intersection points P1, P2, P3, P4, P5, P6.

Lemma 6.3.3. The divisor −KS is ample.

Proof. We must show that at most two points among P1, P2, P3, P4, P5, P6 are contained in

a line, and not all of these six points are contained in an irreducible conic.

If there exists a line ℓ⊂ Π such that ℓ contains at least three points among P1, P2, P3, P4, P5,

P6, then ℓ is a trisecant of the curve C6, so that the line ℓ is contained in π(E ′), and its strict

transform on the threefold X is a fiber of the projection E ′ →C′
6. But the planes in P3 containing

π(P) and a trisecant of the curve C6 form a one-dimensional family. Hence, a general plane

in P3 that contains the point π(P) does not contain trisecants of the curve C6. Therefore, we

conclude that at most two points among P1, P2, P3, P4, P5, P6 are contained in a line.

Similarly, if the points P1, P2, P3, P4, P5, P6 are contained in an irreducible conic in Π, then its

strict transform on the threefold X has trivial intersection with H ′ ∼ 3H −E, which implies that

this conic is the image of a fiber of the projection E ′ → C′
6, which is impossible, since these

fibers are mapped to lines in P3. Therefore, the divisor −KS is ample.

Thus, we can identify S with a smooth cubic surface in P3. Recall that P ̸∈ E.

Lemma 6.3.4. Suppose that there exists a line ℓ⊂ S such that P ∈ ℓ. Then π(ℓ) is a conic.

Proof. If π(ℓ) is not a conic, then π(ℓ) is a secant of the curve C6 that contains π(P). Let us

show that we can choose Π such that it does not contain any secant of the curve C6.

Let ϕ : P3 99K P2 be the linear projection from π(P). Since C6 is not hyperelliptic and π(P) ̸∈
C6, one of the following two possibilities holds:

1. ϕ(C6) is a singular curve of degree 6, and ϕ induces a birational morphism C6 →ϕ(C6),

2. ϕ(C6) is a smooth cubic, and ϕ induces a double cover C6 → ϕ(C6).

In the second case, the curve C6 is contained in an irrational cubic cone in P3, which is

impossible, because the composition π ′◦π−1 birationally maps every cubic surface containing

C6 to a plane in P3. Thus, we see that ϕ(C6) is a singular irreducible curve of degree 6.

All secants of the curve C6 containing π(P) are mapped by ϕ to singular points of the curve

ϕ(C6). Since this curve has finitely many singular points, there are finitely many secants of

the curve C6 that pass through π(P). Hence, since Π is a general plane in P3 that con-

tains π(P), we may assume that it does not contain secants of the curve C6 containing π(P),

so π(ℓ) is a conic.

Let T be the unique hyperplane section of the surface S ⊂ P3 that is singular at P. Then it

follows from Lemma 6.3.4 that either P is not contained in any line in S, and one of the following

cases holds:
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(a) T is an irreducible cubic curve that has a node at P;

(b) T is an irreducible cubic curve that has a cusp at P;

or P is contained in a unique line ℓ⊂ S, π(ℓ) is a conic, and one of the following cases holds:

(c) T = ℓ+C2 for a smooth conic C2 that intersect ℓ transversally at P;

(d) T = ℓ+C2 for a smooth conic C2 that is tangent to ℓ at P.

Let us construct another curve in S that is also singular at P. Namely, for each i∈{1,2,3,4,5,6},

let ℓi be the proper transform on S of the unique line in Π that passes through the points π(P)

and Pi. Set L = ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5 + ℓ6. Then it follows from Example 47 that

P(u)
∣∣
S ∼R


2+u

3
T +

1−u
3

L if 0 ⩽ u ⩽ 1,

(4−3u)T if 1 ⩽ u ⩽
4
3
.

Recall from Example 47 that τ = 4
3 and SX(S) = 53

120 .

Let T̃ and L̃ be the proper transforms on S̃ of the curves T and L, respectively. If 0 ⩽ u ⩽ 1,

then

f ∗
(
P(u)|S

)
− vF ∼R

2+u
3

T̃ +
1−u

3
L̃+

10−4u−3v
3

F,

which implies that t̃(u) = 10−4u
3 . Similarly, if 1 ⩽ u ⩽ 4

3 , then

f ∗
(
P(u)|S

)
− vF ∼R (4−3u)T̃ +(8−6u− v)F,

which implies that t̃(u) = 8−6u.

Finally, set R = E ′|S. Then R is a smooth curve. Let R̃ be its strict transform on S̃. Then

Ñ′(u) =

0 if 0 ⩽ u ⩽ 1,

(u−1)R̃ if 1 ⩽ u ⩽
4
3
.

So, if 0 ⩽ u ⩽ 1 or P ̸∈ E ′, then d̃(u) = 0. Similarly, if 1 ⩽ u ⩽ 4
3 and P ∈ E ′, then d̃(u) = u−1.

Lemma 6.3.5. Suppose that P is not contained in any line in S. Then β (F)> 0.

Proof. The curve T is irreducible. If 0 ⩽ u ⩽ 1, then by considering intersection with T̃ and L̃,

we obtain:

P(u,v)∼R



2+u
3

T̃ +
1−u

3
L̃+

10−4u−3v
3

F if 0 ⩽ v ⩽
6−3u

2
,

20−8u−6v
3

T̃ +
1−u

3
L̃+

10−4u−3v
3

F if
6−3u

2
⩽ v ⩽ 3−u,

10−4u−3v
3

(
2T̃ + L̃+F

)
if 3−u ⩽ v ⩽

10−4u
3

,
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and

N(u,v) =


0 if 0 ⩽ v ⩽

6−3u
2

,

(2v−6+3u)T̃ if
6−3u

2
⩽ v ⩽ 3−u,

(2v−6+3u)T̃ +(v+u−3)L̃ if 3−u ⩽ v ⩽
10−4u

3
.

This gives

(
P(u,v)

)2
=


u2 − v2 −8u+10 if 0 ⩽ v ⩽

6−3u
2

,

10u2 +12uv+3v2 −44u−24v+46 if
6−3u

2
⩽ v ⩽ 3−u,

(10−4u−3v)2 if 3−u ⩽ v ⩽
10−4u

3

and

P(u,v) ·F =


v if 0 ⩽ v ⩽

6−3u
2

,

12−6u−3v if
6−3u

2
⩽ v ⩽ 3−u,

30−12u−9v if 3−u ⩽ v ⩽
10−4u

3
.

Similarly, if 1 ⩽ u ⩽ 4
3 , then

P(u,v)∼R


(4−3u)T̃ +(8−6u− v)F if 0 ⩽ v ⩽

12−9u
2

,

(8−6u− v)
(
2T̃ +F

)
if

12−9u
2

⩽ v ⩽ 8−6u,

and

N(u,v) =


0 if 0 ⩽ v ⩽

12−9u
2

,

(2v+9u−12)T̃ if
12−9u

2
⩽ v ⩽ 8−6u.

This gives

(
P(u,v)

)2
=


27u2 − v2 −72u+48 if 0 ⩽ v ⩽

12−9u
2

,

3(8−6u− v)2 if
12−9u

2
⩽ v ⩽ 8−6u,

and

P(u,v) ·F =


v if 0 ⩽ v ⩽

12−9u
2

,

24−18u−3v if
12−9u

2
⩽ v ⩽ 8−6u.
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Thus, if P ∈ E ′, then

S
(
W S

•,•;F
)
=

3
20

4
3∫

1

(27u2 −72u+48)(u−1)du+
3
20

1∫
0

6−3u
2∫

0

u2 − v2 −8u+10dvdu+

+
3

20

1∫
0

3−u∫
6−3u

2

10u2 +12uv+3v2 −44u−24v+46dvdu+
3
20

1∫
0

10−4u
3∫

3−u

(4u+3v−10)2dvdu+

+
3
20

4
3∫

1

12−9u
2∫

0

27u2 − v2 −72u+48dvdu+
3
20

4
3∫

1

8−6u∫
12−9u

2

3(6u+ v−8)2dvdu =
41
24

< 2.

Similarly, if P ̸∈ E ′, then S(W S
•,•;F) = 409

240 < 41
24 < 2.

Now, let O be a point in F . Let us compute S(W S̃,F
•,•,•;O). We have

S(W S̃,F
•,•,•;O) =

3
20

1∫
0

6−3u
2∫

0

v2dvdu+
3
20

1∫
0

3−u∫
6−3u

2

(12−6u−3v)2dvdu+

+
3
20

1∫
0

10−4u
3∫

3−u

(30−12u−9v)2dvdu+
3
20

4
3∫

1

12−9u
2∫

0

8v2dvdu+
3

20

4
3∫

1

8−6u∫
12−9u

2

(24−18u−3v)2dvdu+FO
(
W S̃,F

•,•,•
)
,

so that S(W S̃,F
•,•,•;O) = 63

80 +FO(W
S̃,F
•,•,•). In particular, if P ̸∈ E ′ and O ̸∈ T̃ ∪C̃, then FO(W

S̃,F
•,•,•) =

0, which implies that S(W S̃,F
•,•,•;O) = 63

80 . Let us compute FO(W
S̃,F
•,•,•) in the remaining cases.

First, we deal with the case P ̸∈E ′. If P ̸∈E ′, then we have O ̸∈ Supp(Ñ′(u)) for every u∈ [0, 4
3 ].

Moreover, if P ̸∈ E ′ and O ∈ L̃, then O ̸∈ T̃ , and L̃ intersects F transversally at O, which gives

S
(
W S̃,F

•,•,•;O
)
=

63
80

+
6
20

1∫
0

10−4u
3∫

3−u

(
P(u,v) ·F

)
(v+u−3)

(
L̃ ·F

)
Odvdu =

19
24

.
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Similarly, if P ̸∈ E ′ and O ∈ T̃ , then O ̸∈ L̃ and

S
(
W S̃,F

•,•,•;O
)
=

63
80

+
6

20

1∫
0

10−4u
3∫

6−3u
2

(
P(u,v) ·F

)
(2v−6+3u)

(
T̃ ·F

)
Odvdu+

+
6
20

4
3∫

1

8−6u∫
12−9u

2

(
P(u,v)·F

)
(2v+9u−12)

(
T̃ ·F

)
O =

63
80

+
6

20

1∫
0

3−u∫
6−3u

2

(12−6u−3v)(2v−6+3u)
(
T̃ ·F

)
Odvdu+

+
6
20

1∫
0

10−4u
3∫

3−u

(30−12u−9v)(2v−6+3u)
(
T̃ ·F

)
Odvdu+

6
20

4
3∫

1

8−6u∫
12−9u

2

(24−18u−3)(2v+9u−12)
(
T̃ ·F

)
O,

so S(W S̃,F
•,•,•;O) = 63

80 +
5

96

(
T̃ ·F

)
O ⩽ 63

80 +
5
96 T̃ ·F = 107

120 . Hence, if P ̸∈ E ′, then β (F) > 0 by

(8).

Therefore, to complete the proof of the lemma, we may assume that P∈E ′. Since R is smooth,

the curve R̃ intersects F transversally at one point, so that

ordO
(
Ñ′(u)

∣∣
F

)
=


0 if 0 ⩽ u ⩽ 1,

0 if 1 ⩽ u ⩽
4
3

and O ̸= R̃∩F ,

u−1 if 1 ⩽ u ⩽
4
3

and O = R̃∩F .

Hence, if O ̸= R̃∩F , then S(W S̃,F
•,•,•;O) can be computed as in the case P ̸∈ E ′. Thus, we may

also assume that O = R̃∩F . Moreover, if O ∈ L̃, then our previous calculations give

S
(
W S̃,F

•,•,•;O
)
=

6
20

4
3∫

1

t̃(u)∫
0

(
P̃(u,v) ·F

)
(u−1)dvdu+

19
24

=

=
6
20

4
3∫

1

12−9u
2∫

0

v(u−1)dvdu+
6

20

4
3∫

1

8−6u∫
12−9u

2

(24−18u−3v)(u−1)dvdu+
19
24

=
191
240

.

Similarly, if O ∈ T̃ , then, using our previous computations, we get

S
(
W S̃,F

•,•,•;O
)
=

1
241

+
63
80

+
5
96
(
T̃ ·F

)
O ⩽

1
241

+
63
80

+
5

96
T̃ ·F =

43
48

.

Thus, we see that S(W S̃,F
•,•,•;O)< 1 for every point O ∈ F , so that β (F)> 0 by (8).
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To complete the proof of Theorem A, we may assume that T = ℓ+C2 and P ∈ ℓ∩C2, where

ℓ is a line such that π(ℓ) is a conic in P2, and C2 is a smooth conic such that π(C2) is a line.

Then C2 is one of the curves ℓ1, ℓ2, ℓ3, ℓ4, ℓ5, ℓ6, so we may assume that C2 = ℓ6. Set

L′ = ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5. Let us denote by ℓ̃, C̃2, L̃′ the strict transforms on the surface S̃ of

the curves ℓ, C2, L′, respectively. Then ℓ̃∩ L̃′ = ∅ and C̃2 ∩ L̃′ = ∅. Moreover, if 0 ⩽ u ⩽ 1,

then by considering intersection with the curves ℓ̃,C̃2 and L̃′, we obtain:

P(u,v)∼R



2+u
3

ℓ̃+C̃2 +
1−u

3
L̃′+

10−4u−3v
3

F if 0 ⩽ v ⩽ 3−2u,

13−4u−3v
6

ℓ̃+C̃2 +
1−u

3
L̃′+

10−4u−3v
3

F if 3−2u ⩽ v ⩽
9−4u

3
,

10−4u−3v
3

(
2ℓ̃+3C̃2 +F

)
+

1−u
3

L̃′ if
9−4u

3
⩽ v ⩽ 3−u,

10−4u−3v
3

(
2ℓ̃+ L̃′+3C̃2 +F

)
if 3−u ⩽ v ⩽

10−4u
3

,

and

N(u,v) =



0 if 0 ⩽ v ⩽ 3−2u,
v+2u−3

2
ℓ̃ if 3−2u ⩽ v ⩽

9−4u
3

,

(2v+3u−6)ℓ̃+(3v+4u−9)C̃2 if
9−4u

3
⩽ v ⩽ 3−u,

(2v+3u−6)ℓ̃+(3v+4u−9)C̃2 +(v+u−3)L̃′ if 3−u ⩽ v ⩽
10−4u

3
.

This gives

(
P(u,v)

)2
=



u2 − v2 −8u+10 if 0 ⩽ v ⩽ 3−2u,

29
2
−14u−3v+3u2 − v2

2
+2vu if 3−2u ⩽ v ⩽

9−4u
3

,

11u2 +14uv+4v2 −50u−30v+55 if
9−4u

3
⩽ v ⩽ 3−u,

(10−4u−3v)2 if 3−u ⩽ v ⩽
10−4u

3
,

and

P(u,v) ·F =



v if 0 ⩽ v ⩽ 3−2u,
3
2
−u+

v
2

if 3−2u ⩽ v ⩽
9−4u

3
,

15−7u−4v if
9−4u

3
⩽ v ⩽ 3−u,

30−12u−9v if 3−u ⩽ v ⩽
10−4u

3
.
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Furthermore, if 1 ⩽ u ⩽ 4
3 , then

P(u,v)∼R


(4−3u)(ℓ̃+C̃2)+(8−6u− v)F if 0 ⩽ v ⩽ 4−3u,

12−9u− v
2

ℓ̃+(4−3u)C̃2 +(8−6u− v)F if 4−3u ⩽ v ⩽
20−15u

3
,

(8−6u− v)
(
2ℓ̃+3C̃2 +F

)
if

20−15u
3

⩽ v ⩽ 8−6u,

and

N(u,v) =


0 if 0 ⩽ v ⩽ 4−3u,

v+3u−4
2

ℓ̃ if 4−3u ⩽ v ⩽
20−15u

3
,

(9u+2v−12)ℓ̃+(15u+3v−20)C̃2 if
20−15u

3
⩽ v ⩽ 8−6u.

This gives

(
P(u,v)

)2
=


27u2 − v2 −72u+48 if 0 ⩽ v ⩽ 4−3u,

56−84u−4v+
63
2

u2 − v2

2
+3vu if 4−3u ⩽ v ⩽

20−15u
3

,

4(8−6u− v)2 if
20−15u

3
⩽ v ⩽ 8−6u,

and

P(u,v) ·F =


v if 0 ⩽ v ⩽ 4−3u,

2− 3u
2
+

v
2

if 4−3u ⩽ v ⩽
20−15u

3
,

32−24u−4v if
20−15u

3
⩽ v ⩽ 8−6u.

Now, as in the proof of Lemma 6.3.5, we compute

S
(
W S

•,•;F
)
=


77
45

if P ∈ E ′,

1229
720

if P ̸∈ E ′.

Similarly, if O is a point in F , we can compute S(W S̃,F
•,•,•;O) as we did in the proof of Lemma 6.3.5.

The results of these computations are presented in the following two tables:

condition O ∈ ℓ̃∩C̃2 ∩ R̃ ℓ̃∩C̃2 ∋ O ̸∈ R̃ ℓ̃∩ R̃ ∋ O ̸∈ C̃2 ℓ̃ ∋ O ̸∈ R̃∪C̃2 C̃2 ∩ R̃ ∋ O ̸∈ ℓ̃

S
(
W S̃,F

•,•,•;O
) 163

180
649
720

1859
2160

185
216

1801
2160

condition C̃2 ∋ O ̸∈ R̃∪ ℓ̃ O ∈ L̃′∩ R̃ L̃′ ∋ O ̸∈ R̃ R̃ ∋ O ̸∈ ℓ̃∪C̃′∩ L̃′ O ̸∈ ℓ̃∪C̃′∩ L̃′∪ R̃

S
(
W S̃,F

•,•,•;O
) 112

135
571
720

71
90

71
90

113
144
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Thus, we proved that S(W S
•,•;F)< 2, and we proved that S(W S̃,F

•,•,•;O)< 1 for every point O∈F .

Therefore, using (8), we get β (F)> 0. This completes the proof of Theorem A.

6.4 The proof of Theorem B

Let us use all assumptions and notations introduced in Section 6.1. Recall that

Aut
(
P3,C6

)
≃ Aut

(
C, [D]

)
⊂ Aut(C).

For a general quartic curve C, the automorphism group is trivial. The cases for which it is not

are listed in Bars Cortina (2006); Dolgachev (2012). We recall them here.

Proposition 6.4.1 ((Bars Cortina, 2006, Theorem 16), (Dolgachev, 2012, Table 6)). Let C be

a smooth plane quartic curve such that the automorphism group Aut(C) is not trivial. Then

the possibilities for C and Aut(C) are as follows.

Aut(C) GAP ID Equation of the curve C Notes

Z2 [2,1] z4 +λ z2P(x,y)+Q(x,y) = 0
deg(P) = 2,deg(Q) = 4,

C not one of the curves below

Z3 [3,1] z3P(x,y)+Q(x,y) = 0
deg(P) = 1,deg(Q) = 4,

C not one of the curves below

Z2 ×Z2 [4,2] x4 + y4 + z4 + z2(λx2 +µy2)+ γx2y2 = 0 λ ̸= γ,µ ̸= γ,λ ̸= µ

S3 [6,1] z4 + z(x3 + y3)+λ z2xy+µx2y2 = 0 λ ̸= µ,λ µ ̸= 0

Z6 [6,2] z4 +λy2z2 + y4 + x3z = 0 λ ̸= 0

D4 [8,3] x4 + y4 + z4 +λ z2(x2 + y2)+µx2y2 = 0 λ ̸= 0 and λ ̸= µ

Z9 [9,1] z4 + zy3 + yx3 = 0

D4.Z2 [16,13] x4 + y4 + z4 +λx2y2 = 0 λ /∈ {0,±2,±6,±2i
√

3}

S4 [24,12] x4 + y4 + z4 +λ (x2y2 + x2z2 + y2z2) = 0 λ /∈ {−1,2,−2,0, −3±3i
√

7
2 }

Z4.A4 [48,33] y4 − x3z+ z4 = 0

Z2
4 ⋊S3 [96,64] x4 + y4 + z4 = 0

PSL2(F7) [168, 42] x3y+ y3z+ z3x = 0
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Since π is Aut(P3,C6)-equivariant, we can also identify Aut(P3,C6) with a subgroup in Aut(X).

Then the action of the group Aut(X) on the set {E,E ′} gives a monomorphism

Aut(X)/Aut
(
P3,C6

)
↪→ Z2,

which is surjective if and only if Aut(X) has an element that swaps the surfaces E and E ′.

Remark 6.4.2 ((Dolgachev, 2012, Example 7.2.6)). We can choose M1, M2, M3 in (2) to be

symmetric ⇐⇒ 2D∼KC. Moreover, if M1, M2, M3 are symmetric, then X admits the involution

(
[x0 : x1 : x2 : x3], [y0 : y1 : y2 : y3]

)
7→
(
[y0 : y1 : y2 : y3], [x0 : x1 : x2 : x3]

)
.

In this case, we have Aut(X)≃ Aut(P3,C6)×Z2. For more details, see Ottaviani (2024).

Remark 6.4.3 (Kuznetsov). Set V = H0(OC(KC + D)), W = H0(OC(2KC − D)) and G =

Aut(C, [D]). Let Ĝ be a central extension of the group G such that D (considered as a line

bundle) is Ĝ-linearizable. Then the sheaf OC(D) admits a Ĝ-equivariant resolvent

0 →W ∗⊗OP2(−2)→V ⊗OP2(−1)→ OC(D)→ 0,

which is known as the Beilinson resolvent. Since W ∗⊗OP2(−2)→V ⊗OP2(−1) is Ĝ-equivariant,

the corresponding map ρ : V ∗ ⊗W ∗ → H0
(
OP2(1)

)
is equivariant, where H0

(
OP2(1)

)
≃

H0(OC(KC)
)

as Ĝ-representations. On the other hand, the embedding X ↪→ P3 ×P3 given

by (2) can be realized as

X =
(
P(V ∗)×P(W ∗)

)
∩P
(
ker(ρ)

)
,

and the Ĝ-action on X factors through G, which is the natural G-action.

This remark gives the following.

Lemma 6.4.4. There exists a group homomorphism η : Aut(X) → Aut(C) such that its re-

striction to the subgroup Aut(P3,C6)≃ Aut(C, [D]) gives a natural embedding Aut(P3,C6) ↪→
Aut(C).

Proof. Let M be the two-dimensional linear system of divisors of degree (1,1) on P3 ×P3

that contains the threefold X . Then M can be identified with the projectivization of the three-

dimensional vector space spanned by the matrices M1, M2, M3, which we will identify with

P2
x,y,z. Then Aut(X) naturally acts on this P2

x,y,z, because the action of the group Aut(X) on X

lifts to its action on P3 ×P3.

Moreover, the Aut(X)-action on P2
x,y,z preserves the quartic curve in P2

x,y,z given by

det
(
xM1 + yM2 + zM2

)
= 0,
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which parametrizes singular divisors in M . This curve is isomorphic to the curve C, which

gives us the required homomorphism of groups η : Aut(X) → Aut(C). It follows from Re-

mark 6.4.3 that this group homomorphism is functorial, so it gives a natural embedding

Aut(P3,C6) ↪→ Aut(C).

Corollary 6.4.5. Either Aut(X) ≃ Aut(P3,C6)×Z2 or Aut(X) is isomorphic to a subgroup

Aut(C).

Now, we are ready to state a criterion when Aut(X) ̸= Aut(P3,C6).

Lemma 6.4.6. Aut(X) ̸= Aut(P3,C6) ⇐⇒ there is h ∈ Aut(C) such that h∗(D)∼ KC −D.

Proof. By Remark 6.4.3, the left copy of P3 in (3) can be be identified with P(H0(OC(KC +

D))∨), while the right copy of P3 can be be identified with P(H0(OC(2KC −D))∨). Thus, if

Aut(C) contains an automorphism h such that h∗(D)∼ KC −D, we can use it to identify both

copies of P3 in (3), which will give us an automorphism of X that swaps exceptional surfaces

of the blow ups π and π ′.

Vice versa, if the group Aut(X) is larger than Aut(P3,C6), it follows from the proof of Lemma 6.4.4

that there exists h ∈ Aut(C) such that h∗(D)∼ KC −D.

Recall that Aut(P3,C6)≃ Aut(C, [D]), where D is a divisor on C of degree 2 that satisfies (1).

Using Remark 6.4.2, Lemma 6.4.6 and its proof, we obtain

Corollary 6.4.7. One of the following three cases holds:

• 2D ∼ KC and Aut(X)≃ Aut(C, [D])×Z2,

• 2D ̸∼ KC, there is h ∈ Aut(C) such that h∗(D)∼ KC −D, and

Aut(X)≃
〈
Aut(C, [D]),h

〉
.

• Aut(X)≃ Aut(C, [D]), and h∗(D) ̸∼ KC −D for every h ∈ Aut(C).

Corollary 6.4.8. If Aut(X) is not isomorphic to any subgroup of Aut(C), then 2D ∼ KC.

Using Corollary 6.4.7, we can find all possibilities for Aut(X), but this requires a lot of work,

because we have to analyze PicG(C) for every subgroup G ⊂ Aut(C). This can be done using

the following proposition and remark.

Proposition 6.4.9 ((Dolgachev, 1999, Proposition 2.2)). Let G be a subgroup in Aut(C). Then

there exists exact sequence

1 → Hom
(
G,C∗)→ Pic

(
G,C

)
→ PicG(C)→ H2(G,C∗)→ 1,

where Pic(G,C) is the group of G-linearized line bundles on C modulo G-equivariant iso-

morphisms.
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Remark 6.4.10. Let G be a subgroup in Aut(C), let Σ1, . . . ,Σn be all G-orbits in C of length

less that |G|. We may assume that |Σi|⩾ |Σ j| for i ⩾ j. For every i ∈ {1, . . . ,n}, set

ei =
|G|
|Σi|

= the order of the stabilizer in G of a point in Σi.

The signature of the G-action on C is the tuple
[
g;e1, . . . ,en

]
, where g is the genus of the curve C/G.

If C/G ≃ P1, then it follows from (Dolgachev, 1999, (2.2)) that

Pic
(
G,C

)
≃ Z⊕Za1 ⊕Za2 ⊕·· ·⊕Zan−1

for a1 = d1,a2 =
d2
d1
, . . . ,an−1 =

dn−1
dn−2

, where

d1 = gcd(e1, . . . ,en),

d2 = gcd(e1e2,e1e3, . . . ,eie j, . . . ,en−1en),

...

dn−1 = gcd(e1e2 · · ·en−1, . . . ,e2 · · ·en−1en).

Moreover, if γ is a generator of the free part of PicG(C) in this case, then it follows from it

follows from (Dolgachev, 1999, (2.3)) that

4 = deg(KC) = lcm(e1, . . . ,en)

(
n−2−

n

∑
i=1

1
ei

)
deg(γ).

Let us show how to compute PicG(C) in some cases.

Example 49. Suppose that Aut(C) has a subgroup G ≃ S4. Then, by Proposition 6.4.1,

the quartic curve C can be given in P2
x,y,z by

x4 + y4 + z4 +λ (x2y2 + x2z2 + y2z2) = 0

for some λ ∈ C such that λ ̸∈ {−1,2,−2}. One can show that

Aut(C)≃


S4 if λ ̸= 0 and λ ̸= −3±3

√
7i

2
,

Z2
4 ⋊S3 if λ = 0,

PSL2(F7) if λ =
−3±3

√
7i

2
.

We have C/G ≃ P1, and it follows from LMFDB Collaboration (2025) that the signature is

[0;2,2,2,3]. Thus, using Remark 6.4.10, we see that Pic(G,C) ≃ Z×Z2
2, and the free part

of the group Pic(G,C) is generated by KC. Moreover, using GAP, we compute Hom(G,C∗)≃
H2(G,C∗) ≃ Z2. Therefore, using Proposition 6.4.9, we get the following exact sequence of
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group homomorphisms:

0 → Z×Z2 → PicG(C)→ Z2 → 0.

We also know from Disney-Hogg (2024) that Pic(C) contains two G-invariant even theta-

characteristics θ1 and θ2. This immediately implies that PicG(C) = ⟨θ1,θ2⟩ ≃ Z×Z2.

Example 50 (Dolgachev (1999)). Suppose that Aut(C)≃ PSL2(F7). Then C is given in P2
x,y,z

by

xy3 + yz3 + zx3 = 0.

Set G = Aut(C). Using Example 44, we conclude that PicG(C) contains an even theta-

characteristic θ . Now, arguing as in Example 49, we get PicG(C) = ⟨θ⟩ ≃ Z.

Example 51. Suppose that Aut(C)≃ Z2
4 ⋊S3, of GAP ID [96,64]. Then C is given in P2

x,y,z by

x4 + y4 + z4 = 0,

the group Aut(C) contains a unique subgroup isomorphic to Z2
4 ⋊Z3, and C is the unique

plane quartic curve admiting a faithful Z2
4⋊Z3-action. Let G be this subgroup. Then the signa-

ture is [0;3,3,4]. Therefore, using Remark 6.4.10, we get Pic(G,C)≃ Z×Z3, where the free

part is generated by KC. Since Hom(G,C∗)≃Z3 and H2(G,C∗)≃Z4, it follows from Propos-

ition 6.4.9 that

PicG(C)/⟨KC⟩ ≃ Z4.

Moreover, we know from Section 6.2.2 that PicG(C) contains a divisor D of degree 2. Thus,

we conclude that PicG(C) = ⟨KC,D⟩ ≃ Z×Z2, and KC −2D is a two-torsion divisor.

Example 52. Let C be the Fermat quartic curve from Example 51, and let G = Aut(C) ≃
Z2

4 ⋊S3. Then the signature is [0;2,3,8], so it follows from Remark 6.4.10 that

Pic(G,C)≃ Z×Z2,

where the free part is generated by KC. One can check that Hom(G,C∗)≃Z2 and H2(G,C∗)≃
Z2. We claim that PicG(C) has no divisors of degree 2. Indeed, if PicG(C) has a divisor D of

degree 2, then |KC +D| gives a G-equivariant embedding C ↪→ P3, and we can identify C

with its image in P3. Then Aut(P3,C) ≃ G, and P3 has no Aut(P3,C)-orbits of length 1 or

2. This contradicts Lemma 6.2.6, because Z3
2.S4 does not contain subgroups isomorphic to

G. Therefore, we see that PicG(C) does not contain divisors of degree 2, so arguing as in

Example 51, we get

PicG(C) = ⟨KC,δ ⟩ ≃ Z×Z2,

where δ is a two-torsion divisor.

Using results described in Examples 49, 50, 51, 52, we get the following corollaries:
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Corollary 6.4.11. If Aut(P3,C6) has a subgroup isomorphic to S4, then one of the following

holds:

• Aut(P3,C6)≃S4 and Aut(X)≃S4 ×Z2,

• Aut(P3,C6)≃ PSL2(F7) and Aut(X)≃ PSL2(F7)×Z2.

Corollary 6.4.12. The smooth Fano threefold described in Example 44 is the unique smooth

Fano threefold in the deformation family №2.12 that admits a faithful action of the group

PSL2(F7).

Corollary 6.4.13. The smooth Fano threefold described in Section 6.2.2 is the only smooth

Fano threefold in the family №2.12 that admits a faithful action of the group Z2
4 ⋊Z3.

Proof. Suppose that Aut(X) has a subgroup isomorphic to Z2
4 ⋊Z3. Then arguing as in

Example 52, we see that Aut(P3,C6) ≃ Z2
4 ⋊Z3, and Aut(P3,C6) is conjugate to the sub-

group G that has been described in Section 6.2.2. Thus, the required assertion follows from

Theorem 6.2.9.

Now, we are ready to prove Theorem B.

Proof of Theorem B. It is enough to show that the automorphism group Aut(X) is isomorphic

to a subgroup of PSL2(F7)×Z2 or Z2
4 ⋊S3. Suppose this is not true. Let us seek for a

contradiction.

Using a variation of the Magma code used in Braden and Disney-Hogg (2025); Disney-Hogg

(2024) provided to us by Linden Disney-Hogg, we compute the lengths of K-orbits of theta-

characteristics for every possible subgroup K ⊆ Aut(C). This shows that if a subgroup in

Aut(C) leaves an even theta-characteristic invariant, then this subgroup is isomorphic to a

subgroup of PSL2(F7)×Z2 or Z2
4 ⋊S3.

Let G = Aut(C, [D]). Since G is not contained in PSL2(F7)×Z2 or Z2
4 ⋊S3, the curve C

does not contain G-invariant even theta-characteristics. Therefore, D is not an even theta

characteristic. Thus, by Corollary 6.4.8, the group Aut(X) is isomorphic to a subgroup of

the group Aut(C).

Now, using Proposition 6.4.1, we find that the only possibilities of Aut(X) are:

Z9, Z12, SL2(F3) (GAP ID is [24,3]), Z4.A4 (GAP ID is [48,33]),

Moreover, by Corollary 6.4.7, either G = Aut(X) or G is a subgroup in Aut(X) of index 2.

Thus, we have the following possibilities:

Aut(X) Z9 Z12 Z12 SL2(F3) Z4.A4 Z4.A4

G Z9 Z6 Z12 SL2(F3) SL2(F3) Z4.A4
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Recall that D is a divisor on the quartic curve C such that deg(D) = 2, the divisor D satis-

fies (1), and its class [D] ∈ Pic(C) is G-invariant. Let us show that in each of our cases, such

D does not exist.

For each G, Proposition 6.4.1 lists all possibilities for the equation of C, and using Remark 6.4.10,

we can describe the signature of the G-action on C, as well as the degree of a generator γ

of the free part of the group PicG(C). Finally, Proposition 6.4.9 allows us to compute the

structure of the group PicG(S). This gives the following possibilities:

G Equation of C Signature Structure of PicG(S) deg(γ)

Z6 y4 − x3z+ z4 +λy2z2 = 0, λ ∈ C [0;2,3,3,6] Z×Z3 1

Z9 y3z− x(x3 − z3) = 0 [0;3,9,9] Z×Z3 1

Z12 y4 − x3z+ z4 = 0 [0;3,4,12] Z 1

SL2(3) y4 − x3z+ z4 = 0 [0;2,3,6] Z×Z6 4

Z4.A4 y4 − x3z+ z4 = 0 [0;2,3,12] Z 4

In particular, if G ≃ SL2(3) or G ≃ Z4.A4, then C does not have G-invariant divisors of

degree 2. Hence, we see that G is isomorphic to one of the following groups: Z6, Z9, Z12.

Suppose that G ≃ Z12. Then the action of G on C is generated by

[x : y : z] 7→
[
ω3x : iy : z

]
,

where ω3 is a primitive cube root of the unity. Then G fixes the point P = [1 : 0 : 0], which

implies that PicG(S) = Z[P], so that D ∼ 2P, which contradicts to our assumption that D

satisfies (1).

Assume now that G ≃ Z9. Then the G-action on the curve is given by

[x : y : z] 7→
[
ω9x : ω

−3
9 y : z

]
,

where ω9 is a primitive ninth root of the unity. Set P1 = [0 : 1 : 0] and P2 = [0 : 0 : 1]. Then

{z = 0}∩C = 4P1,

{x = 0}∩C = P1 +3P2,

which implies that the divisor P1 −P2 is 3-torsion. Thus, since P1 and P2 are fixed by G, we

have

PicG(S) = ⟨P1,P2⟩,
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and, in particular, D is linearly equivalent to 2P1, 2P2 or P1 +P2, which contradicts (1).

Finally, consider the case where G is isomorphic to Z6. Then the G-action is given by

[x : y : z] 7→
[
−ω6x : −y : z],

where ω6 is a primitive sixth root of unity. Set P = [1 : 0 : 0]. Then P is fixed by G, and

{z = 0}∩C = 4P.

Moreover, the intersection {x = 0}∩C splits as a union of two G-orbits of length 2, which we

denote by Σ2 and Σ′
2. Then, by adjunction formula, we have

KC ∼ 4P ∼ Σ2 +Σ
′
2.

This gives PicG(S) = ⟨P,Σ2⟩. Moreover, it is not difficult to check that

3Σ2 +2P ∼ 2KC ∼ 8P

whence 2P−Σ2 is a 3-torsion. Then D is linearly equivalent to 2P, Σ2, Σ′
2, which contradicts

(1).
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